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Abstract—Weakly-hard models have been used to analyse real-
time systems subject to patterns of deadline hits and misses.
However, the tools that are available in the literature have a set of
shortcomings. The analysis they offer is limited to a single weakly-
hard constraint and to patterns that specify the number of misses,
rather than the number of hits. Furthermore, the scalability of
the tools is limited, effectively making it hard to address systems
where deadline misses are really sporadic events. In this paper
we present WeaklyHard.jl, a scalable tool to analyse a set of
weakly hard constraints belonging to all the four types of weakly
hard models. To achieve scalability, we exploit novel dominance
relations between weakly-hard constraints, based on deadline
hits. We provide experimental evidence of the tool’s scalabil-
ity, compared to the state-of-the-art for a single constraint, a
thorough investigation of hit-based weakly-hard constraints, and
a sensitivity analysis to constraint set parameters.

Index Terms—Weakly-Hard Task Model, Deadline Miss

I. INTRODUCTION

A recent survey on the state of industrial practice in real-
time systems showed that a significant fraction of real-time
tasks are allowed to miss a finite number of deadlines [2].
The research community spent years defining and analysing
models of tasks that can miss deadlines, from soft real-time
systems [9], to tasks with a skip-factor [20], from calculating
the miss ratio based on execution time probability distribu-
tions [24], to approximating the deadline miss probability [7],
[34], [35] for a given system.

One of such models in which tasks may miss deadlines
is the weakly-hard task model [5]. Weakly-hard tasks behave
according to patterns of hit and missed deadlines that are
(mainly) window-based. The originally proposed constraint
models specifies alternatively (for a window of subsequent
jobs): (i) the minimum number of deadlines that are hit,
(ii) the minimum number of consecutive deadlines that are hit,
(iii) the maximum number of deadlines that may be missed,
or (iv) the maximum number of consecutive deadlines that
may be missed. The third of these models – often called the
(m,K) model – gained attention in the research community,
generating results on scheduling algorithms [13], real-time
and schedulability analysis [14], [27], [30], verification [3],
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[18] and runtime monitoring [37] of constraint satisfaction,
derivation of task model parameters [38], together with ap-
plications to domains like telecommunication [1], [19] and
control systems [25], [26], [28], [36]. The fourth model has
also proved relevant to perform analyses of the stability of con-
trol systems [23]. Furthermore, the relation between weakly-
hard constraint types has been partially investigated [31], [37].
However, this investigation remains partial as some of the
constraints are not connected and their dominance (i.e., the
comparison of how strictly does the task model constrain
the task execution for different types of constraints) is not
assessed.

The practical usefulness of weakly-hard models will remain
limited, unless it is possible to build tools to enforce and mon-
itor the satisfaction of weakly-hard constraints for execution
platforms. Many real-time platforms offer the possibility to
invoke “protected” task executions, ensuring that deadlines are
met at the cost of increasing the execution cost. This is a very
simple mechanism to secure that the weakly-hard constraint
is satisfied in an execution platform. However, this requires
writing monitoring code, that generates transition points to this
protected execution mode when a constraint might otherwise
be violated. Generating this code in a scalable way requires
abstracting from the constraint and representing the execution
of tasks with compact, but expressive, models.

To date, the literature has focused on the (m,K) constraint,
neglecting the others, despite their relevance in application
domains such as control [21], [23], [36]. As a result, the
mentioned tools and models are not available for all the
constraint types. This paper aims at both solving this problem
and answering some open issues, namely: (i) guaranteeing
consecutive deadline hits, and not only following patterns of
deadline misses; and (ii) dealing with systems that satisfy
multiple weakly-hard constraint simultaneously.

The first issue comes from the consideration that in prac-
tice it may be easier to guarantee that some prescribed job
will hit their deadline rather than ensuring that the number
of misses follows a given pattern. This is the case of the
mentioned protected execution environment. As an example,
mixed-criticality allows the scheduler to raise the criticality
level and thus guarantee that the highly-critical tasks meet
the corresponding deadlines [8]. We can treat the weakly-hard
task as highly critical and raise the criticality level when a
deadline hit must be enforced. Alternatively, we can increase



the budget of a reservation-based scheduler [10]. Despite the
fact that guaranteeing hits is often easier than enforcing miss
patterns, the first two types of weakly hard tasks, that constrain
the number of hits, have not been receiving much attention
from the research community.

Furthermore, we would like to analyse tasks that satisfy
multiple constraints simultaneously. Most analysis methods
only take into account a single constraint, e.g., [26] or [23]
for the stability of control systems. In some cases, one of the
two constraints dominates the other, meaning that satisfying
the dominant constraint also guarantees the satisfaction of the
dominated one. But this is not always the case. Consider for
example two constraints λ1 and λ2, where λ1 specifies that the
task may miss a maximum of 2 deadlines in every window of
5 consecutive jobs, and λ2 that it may miss a maximum of 3
deadlines in every window of 7 consecutive jobs. On the one
hand the sequence 0011100, where 0 represents a deadline
miss and 1, satisfies λ1 but fails λ2, meaning that λ2 does
not dominate λ1. On the other hand the sequence 0001111
satisfies λ2 but fails λ1, and so λ1 does not dominate λ2

either. If the analysis can only be conducted with a single
constraint, the choice of which constraint is to be used is left
to the practitioner, while it would be best to consider both
constraints simultaneously.

Finally, we bring forward the question of scalability. Many
of the research results, for example in the control domain [21],
[22], [26], use short windows. However, for practical appli-
cations it may be relevant to use a large window size, as
done for example in the experimental analysis in [3]. In fact,
the original motivation behind the weakly-hard task model [5]
uses a practical example from the avionics domain in which
a deadline may be missed 11 times in every consecutive
295 jobs. It seems reasonable that systems that are built
and certified (for example in the automotive domain) would
not experience many deadline misses, and that using a short
window size would lead to very conservative results.

To address these questions and empower researchers with
a tool to apply their analysis techniques, this paper presents
WeaklyHard.jl, a software library for weakly hard tasks that
treats scalability as a first-class citizen. More precisely, the
contributions of the paper are the following:

• We provide a theoretical contribution on the relation
between weakly hard tasks that constrain the number of
hits and the number of consecutive hits in a window
(Section III). This relation allows us to relate all the
types of constraints with one another, and provide some
ordering among them.

• We leverage an automata-based representation to describe
the behaviour of a task subject to a weakly-hard con-
straint [22], [32]. In constrast to other approaches, our
description exploits a mapping between a single transition
in the automaton and a deadline (Section IV). This
enables uses such as automatic generation of monitors
to check weakly-hard constraint satisfaction on the fly.

• We extend the automaton to describe a task subject to a
finite set of weakly-hard constraints (Section III). In this

way, we are able to address the analysis of systems that
satisfy multiple constraints, possibly of different types,
that do not dominate one another. As far as we know,
this is the first paper that presents an analysis of a set of
weakly-hard constraints.

We conduct an extensive performance evaluation campaign
with a two-fold purpose (Section V). First, we analyse the
scalability of our library compared to the state of the art
whenever possible, i.e., for single constraints. Second, we look
at sets of constraints and perform a sensitivity analysis, to
determine which parameters affect the execution time of the
automaton construction for a set of constraints.
WeaklyHard.jl can be used for monitoring tasks subject

to multiple weakly-hard constraints, analysing satisfaction
sets, schedulability analysis, or connecting the weakly-hard
model to applied fields like control theory. In particular,
recent papers [21]–[23], [26], [36] connected the weakly-hard
model with control proofs considering stability and perfor-
mance guarantees, and WeaklyHard.jl can generate general
automata-based monitoring code ensuring the satisfaction of
said properties.

II. BACKGROUND AND RELATED WORK

In this work, we analyse a single real-time task. For the
remainder of this paper, a real-time task τ is an entity
composed of a sequence of jobs (ji)i∈N≥ , representing code
that is executed repeatedly on a given hardware platform (not
necessarily according to any temporal pattern or periodicity).
A task is characterised by its relative deadline d, representing
the time after which each job should be completed.

The index i counts the job number. For a given job ji,
we denote with ai its release time (the time in which the
job becomes active in the hardware platform), and with fi
its completion time (the time in which the job terminates its
execution). We also use di to represent the absolute deadline
of the i-th job, meaning that di = ai + d.

In general, a job can either complete its execution before
its deadline or overrun it, resulting respectively in a deadline
hit or miss (collectively denoted by the job’s outcome).

Definition 1 (Deadline Hit). The i-th job of a task τ is said
to hit its deadline if fi ≤ di.

Definition 2 (Deadline Miss). The i-th job of a task τ is said
to miss its deadline if fi > di.

The weakly-hard task model [4], [5] provides guarantees
on the sequence of outcomes of a real-time task via four
constraints, each specifying how deadline misses and hits are
interleaved for a window of k ≥ 1 consecutive jobs.

Definition 3 (Weakly-Hard Task). A weakly-hard task τ is a
task that satisfies (at least) one of the following constraints:

(i) τ ⊢
(
x
k

)
(AnyHit): in any window of k consecutive jobs,

the minimum number of hits is x;
(ii) τ ⊢

〈
x
k

〉
(RowHit): in any window of k consecutive jobs,

the minimum number of consecutive hits is x;



(iii) τ ⊢
(
x
k

)
(AnyMiss): in any window of k consecutive jobs,

the maximum number of misses is x; and
(iv) τ ⊢

〈
x
k

〉
(RowMiss): in any window of k consecutive jobs,

the maximum number of consecutive misses is x;
for some values of x ∈ N≥, k ∈ N>, where x ≤ k. We use
the ⊢ symbol to indicate that all the possible sequences of
outcomes of τ satisfy the right hand side.

The types of constraints in Definition 3 have received
different attention in the real-time systems literature. In par-
ticular, the AnyMiss constraint has been extensively stud-
ied, and is commonly addressed as the (m,K) weakly-hard
task model [1], [13], [15], [16], [26], [30]. However, these
constraints have been studied separately, while a task can
simultaneously satisfy many, possibly of different types.

Exploiting different types of constraints – and possibly
different parameters for the same type of constraint – leads to
a better outcome for the analysis of the system. This follows
from the space of possible sequences being pruned, thus allow-
ing us to focus on proving that the real-time system behaves
correctly in the relevant cases. In the following, we denote a
set of L weakly-hard constraints with Λ = {λ1, λ2, . . . , λL}.
To characterise the possible sequences of outcomes that sat-
isfy a constraint, we borrow some elementary concepts from
language theory, in particular the binary alphabet [17].

Definition 4 (Alphabet Σ of Job Outcomes). We define the
alphabet of job outcomes Σ = {0, 1}, where 0 indicates a
deadline miss and 1 represents a deadline hit.

Using well-established notation, we denote the character
ci ∈ Σ as the outcome of job ji. A word w of length |w| = N
is a sequence of characters w = (c1, c2, . . . , cN ) that specifies
a sequence of consecutive job outcomes for a task. Without
loss of generality, we assume that all words are preceded and
followed only by hits. We denote the subword of a word w
from index a to b with w (a, b) = (ca, ca+1, . . . , cb). Finally,
ΣN denotes the set of all possible words of length N .

With a slight abuse of notation, we use w ⊢ λ to indicate
that the word w satisfies the constraint λ. Obtaining the set of
words satisfying λ follows directly from the definitions of the
alphabet and the constraint itself [4], [5].

Definition 5 (Satisfaction Set SN (λ)). The set of all length N
words w, satisfying the weakly-hard constraint λ, is denoted
by SN (λ). Formally, SN (λ) =

{
w ∈ ΣN |w ⊢ λ

}
, N ≥ 1.

Trivially, all words in SM (λ) are subwords of words exist-
ing in SN (λ), if M ≤ N . To simplify notation we define the
set containing all words of infinite length as S (λ) ≡ S∞ (λ).

Using satisfaction sets, it is possible to formally define a
partial ordering between two constraints λi and λj . We denote
the logical conjunction with ∧ and the logical disjunction with
∨. The following notions of constraint domination and equiv-
alence [4], [5] are used extensively throughout the remainder
of the paper (jointly denoted constraint dominance).

Definition 6 (Constraint Domination). Given two arbitrary
weakly-hard constraints λi and λj , λi dominates λj (denoted

λi ≺ λj) if all words satisfying λi also satisfy λj , i.e., S (λi) ⊂
S (λj). Correspondingly, λi ⪯ λj ⇔ S (λi) ⊆ S (λj).

Definition 7 (Constraint Equivalence). Given two arbitrary
weakly-hard constraints λi and λj , λi is equivalent to λj if
they respectively dominate each other. Formally, λi ≡ λj ⇔
λi ⪯ λj∧λj ⪯ λi. Two constraints are equivalent if they share
the same satisfaction set, i.e., λi ≡ λj ⇔ S (λi) = S (λj).

The notion of constraint dominance has attracted attention
from different areas, and is still occasionally researched [31],
[37]. To provide dominance results, we first define the weakest
and hardest constraints [4], [5].

Definition 8 (Weakest Constraint λ). The weakest constraint
λ is defined as the constraint satisfied by any word. Formally,
SN (λ) = ΣN , ∀N ∈ N>.

Definition 9 (Hardest Constraint λ). The hardest constraint λ
is defined as the constraint satisfied solely by the word con-
taining all deadline hits. Formally, SN

(
λ
)
=

{
1N

}
, ∀N ∈

N>.

Using these definitions, we now review known constraint
dominance relations. We refer the reader to [4] or any refer-
enced paper for the corresponding proofs.

Lemma 1 (Known Equivalence Relations). The following
equivalence relations hold:

(i)
(
x
k

)
≡

(
k−x
k

)
, an AnyHit constraint with x deadline

hits in a window of k jobs is equivalent to an AnyMiss
constraint with k − x hits in a window of k jobs,

(ii)
〈
x
k

〉
≡ ⟨x⟩, ∀k ≥ 1, a RowMiss constraint is independent

of the window size, i.e., it is equivalent to the same
constraint with any k value,

(iii) ⟨x⟩ ≡
(

x
x+1

)
, a RowMiss constraint with x deadline

misses is equivalent to an AnyMiss with x possible misses
in a window of x+ 1 jobs [23],

(iv)
〈
1
k

〉
≡

(
1
k

)
, (trivially) a RowHit constraint is equivalent

to an AnyHit when looking at the same window length
and a single deadline,

(v)
〈
x
k

〉
≡ λ ⇔ x > k/2, a RowHit constraint is equivalent

to the hardest constraint when x > k/2.

Using these equivalence relations, we can always trans-
late AnyMiss and RowMiss constraints into a corresponding
AnyHit constraint. However, there is no clear equivalence
between AnyHit and RowHit constraints (beside the trivial
case of a single deadline and the same window length).
Finding such a relation is important because it would allow
us to treat sets of different types of constraints reducing the
analysis to a single type and therefore improving efficiency.
This motivates our formal analysis of the relation between
hit-related constraints, presented in Section III.

Denoting with ⌊·⌋ and ⌈·⌉ respectively the floor and ceiling
operators, we can then define some domination relations.

Lemma 2 (Known Domination Relations). The following
domination relations hold:



(i)
(
x1

k1

)
⪯

(
x2

k2

)
⇔ x2 ≤ max {a, b}, where a = ⌊k2

k1
⌋x1

and b = k2 −⌈k2

k1
⌉(k1 − x1); the AnyHit constraint with

parameters x1 and k1 dominates all AnyHit constraints
with parameters x2 and k2 if and only if x2 ≤ max {a, b}
with a and b defined as above.

(ii) For any two constraints
〈
x1

k1

〉
,
〈
x2

k2

〉
̸≡ λ,

〈
x1

k1

〉
⪯

〈
x2

k2

〉
⇔(

k2 < k1 ∧ k2 ≤ x1 − ⌈k1−k2

2 ⌉
)
∨ (k2 ≥ k1 ∧ x2 ≤ x1);

this specifies the domination between two RowHit con-
straints depending on their constraint parameters.

(iii)
〈
x1

k

〉
⪯

(
x2

k

)
⇒ {x2 ≤ 4x1 − k − 2, x2 ≤ x1, x2 ≥ 0};

for a fixed and equal window k, if a RowHit constraint
with consecutive deadlines hits x1 dominates an AnyHit
constraint with x2 deadlines hits, then the indicated
relation between the constraint parameters hold.

(iv) ⟨x1⟩ ⪯ ⟨x2⟩ ⇔ x1 ≤ x2; a RowMiss constraint with a
lower number of deadline misses dominates a RowMiss
with a higher number of deadline misses.

(v)
(
x+p
k+p

)
⪯

(
x
k

)
if p > 0; AnyMiss constraints can be

dominated by other AnyMiss constraints when particular
relations hold for values of their parameters [31].

The ability to translate constraints into AnyHit equivalents
makes Lemma 2(i) very powerful to compare different weakly
hard constraints. Finally, Lemma 2(iii) is the only known
result that relates the RowHit constraints with the other types.
However, its applicability is limited to the case in which
the two constraints share the same window size. From the
presentation of the existing constraint dominance relations, we
gather that there is an important piece missing to achieve a
comprehensive weakly-hard analysis.

III. AnyHit, RowHit, AND CONSTRAINT SETS

This section contains the theoretical contribution of the
paper. In III-A, we present some novel results on the relation
between the RowHit and AnyHit constraints. The results
introduce the final theoretical pieces allowing us to relate all
the weakly-hard constraint types to the AnyHit constraint, and
thus to pave the way towards an efficient analysis implemen-
tation. In III-B, we extend the theoretical results to handle
sets of constraints, possibly containing constraints of different
types.

A. Relating RowHit and AnyHit constraints

Our first theoretical contribution is the proof of a condi-
tion regarding the domination of a RowHit constraint over a
AnyHit constraint, precisely〈
x1

k1

〉
⪯

(
x2

k2

)
⇔ x2 ≤ x1 ⌊k2/p⌋+max {0, x1−p+(k2 mod p)}

with p = k1 − x1 + 1. The proof is based on restricting
the AnyHit constraint’s minimum number of hits in order to
ensure that its satisfaction set includes the one of the RowHit
constraint.

Theorem 1 (RowHit–AnyHit Domination). Let S be the
satisfaction set of the RowHit constraint λ1 =

〈
x1

k1

〉
, and

k2 ≥ x2 be non-negative integers. Then the following are
equivalent:

(i) Every sequence in S satisfies the AnyHit constraint
(
x2

k2

)
;

(ii) x2 ≤ x1 ⌊k2/p⌋+max {0, x1 − p+ (k2 mod p)}, where
p = k1 − x1 + 1.

Proof. We split the proof in two separate parts. First, we are
going to prove that ¬(ii) ⇒ ¬(i), and then we will prove that
(ii) ⇒ (i), concluding the argument.
¬(ii) ⇒ ¬(i): Consider the binary sequence that alternates

between x1 consecutive 1’s and p−x1 consecutive 0’s, where
p is as in (ii):

s̄ = . . . 1 . . . 1︸ ︷︷ ︸
x1

p − x1︷ ︸︸ ︷
0 . . . 0 1 . . . 1︸ ︷︷ ︸

x1

p − x1︷ ︸︸ ︷
0 . . . 0 . . . (1)

First observe that s̄ ∈ S. Using the definitions of floor and
modulo operator, for any integer value (including p = k1 +1)
we can rewrite k2 as k2 = ⌊k2/p⌋ + (k2 mod p). From the
definition of sequence s̄ in Equation (1), s̄ certainly contains
a sub-string of length k2 with

x1⌊k2/p⌋+max{0, x1 − p+ (k2 mod p)}

1’s. If the inequality in (ii) does not hold, then s̄ does not
satisfy the AnyHit constraint λ2 =

(
x2

k2

)
(the sub-string of

length k2 above would contain fewer than x2 1s).
(ii) ⇒ (i): Let s be any sequence in S. Now let s′ be equal

to s, except that every maximal sub-string of 1s with fewer
than x1 elements has been replaced with a sub-string of zeros:

s′i =

{
1 if si is part of a sub-string of at least x1 1s,
0 otherwise.

First observe that s ∈ S implies s′ ∈ S . This is because
maximal sub-strings of 1s with fewer than x1 elements do not
contribute to the satisfaction of a RowHit constraint (from the
perspective of this constraint, such sub-strings may as well be
zeros). Also note that if s′ satisfies an AnyHit constraint, so
does s. This is because s can be obtained from s′ by flipping 0s
to 1s, which cannot lead to a violation of an AnyHit constraint.
Therefore, it is sufficient to show that if (ii) holds, any such
s′ satisfies the AnyHit constraint in (i). By construction, s′

alternates between sub-strings of 1’s with at least x1 elements,
and sub-strings of zeros of at most p− x1 elements

s′ = . . . 1 . . . 1︸ ︷︷ ︸
≥ x1

≤ p − x1︷ ︸︸ ︷
0 . . . 0 1 . . . 1︸ ︷︷ ︸

≥ x1

≤ p − x1︷ ︸︸ ︷
0 . . . 0 . . .

It then follows that every sub-string of length k2 in s′ has
at least as many 1’s as every sub-string of length k2 in the
sequence s̄ from (1). Since s̄ satisfies the AnyHit constraint,
so does s′, and therefore so does every s ∈ S as required.

The second theoretical contribution of the paper is the
proof of a condition regarding the domination of an AnyHit
constraint over a RowHit constraint, specifically(

x1

k1

)
⪯

〈
x2

k2

〉
⇔ x2 ≤ min {⌊k2/(z1 + 1)⌋, ⌈x1/z1⌉}

where z1 = k1 − x1.



Theorem 2 (AnyHit–RowHit Domination). Let S be the
satisfaction set of the AnyHit constraint

(
x1

k1

)
, and k2 ≥ x2

be non-negative integers. Then the following are equivalent:
(i) Every sequence in S satisfies the RowHit constraint

〈
x2

k2

〉
;

(ii) x2 ≤ min {⌊k2/(z1 + 1)⌋, ⌈x1/z1⌉}, where z1 = k1 −
x1.

Proof. We split the proof in two separate parts. First, we are
going to prove that ¬(ii) ⇒ ¬(i), and then we will prove that
¬(i) ⇒ ¬(ii), concluding the argument.
¬(ii) ⇒ ¬(i): We split the proof into three cases.
Case 1: 0 < k2 ≤ z1. Let s̄ = . . . sdsdsd . . . (i.e. the

sequence constructed by repeating the sub-string sd), where

sd = 1 . . . 1︸ ︷︷ ︸
x1

z1︷ ︸︸ ︷
0 . . . 0 .

Observe that s̄ ∈ S . Since ⌊k2/ (z1 + 1)⌋ = 0, ¬(ii) implies
that x2 > 0. This implies ¬(i) because s̄ contains at least
k2 consecutive 0s, and therefore cannot satisfy the RowHit
constraint

〈
x2

k2

〉
.

Case 2: k2 > z1 ∧ ⌈x1/z1⌉ ≥ ⌊k2/ (z1 + 1)⌋. Let sd be a
sequence of length k2 consisting of k2−z1 1s and z1 0s, with
the 1s arranged into z1 + 1 sub-strings

sd = 1 . . . 1︸ ︷︷ ︸
l1

0 1 . . . 1︸ ︷︷ ︸
l2

0 . . . 0 1 . . . 1︸ ︷︷ ︸
lz1+1

,

where the lengths of the sub-strings lk satisfy

lk ∈
{⌊

k2 − z1
z1 + 1

⌋
,

⌈
k2 − z1
z1 + 1

⌉}
.

Let s̄ = . . . 111sd111 . . . (i.e. a sequence of all 1s except for
a single sub-string sd). Since this sequence contains only z1
0s, s̄ ∈ S. The conclusion now follows since⌈

k2 − z1
z1 + 1

⌉
=

⌊
k2 − z1 − 1

z1 + 1

⌋
+ 1 =

⌊
k2

z1 + 1

⌋
,

and so if x2 > ⌊k2/ (z1 + 1)⌋, then this s̄ does not satisfy the
RowHit constraint

〈
x2

k2

〉
.

Case 3: k2 > z1 ∧ ⌈x1/z1⌉ < ⌊k2/ (z1 + 1)⌋. Let sd be a
sequence of length k1 consisting of x1 1s and z1 0s, with the
1s arranged into z1 sub-strings

sd = 1 . . . 1︸ ︷︷ ︸
l1

0 1 . . . 1︸ ︷︷ ︸
l2

0 . . . 0 1 . . . 1︸ ︷︷ ︸
lz1

0,

where the lengths of the sub-strings lk satisfy lk ∈
{⌊x1/z1⌋, ⌈x1/z1⌉}. Let s̄ = . . . sdsdsd . . . (i.e. the sequence
constructed by repeating the sub-string sd). Observe that
every sub-string of length k1 in s̄ contains exactly x1 1s,
and therefore s̄ ∈ S . Observe also that s̄ contains no sub-
strings of more than ⌈x1/z1⌉ consecutive 1s, and therefore if
x2 > ⌈x1/z1⌉, s̄ does not satisfy the RowHit constraint

〈
x2

k2

〉
.

¬(i) ⇒ ¬(ii): Under the hypothesis of ¬(i), there exists
a sequence s ∈ S such that s does not satisfy the RowHit
constraint

〈
x2

k2

〉
.

Let s′ be the sequence obtained from s by removing all
0s from the start of s, and then replacing all sub-strings of

0s with length greater than one with a single 0 (for example,
if s = 011001010001 . . ., then s′ = 11010101 . . .. Clearly
s′ ∈ S since this process only removes 0s, and s′ also does
not satisfy the RowHit constraint. Consider now the sub-string
sd formed from the first k2 elements of s′.1 This sub-string
will take the form

sd =


1 . . . 1︸ ︷︷ ︸

l1

0 1 . . . 1︸ ︷︷ ︸
l2

0 . . . 0 1 . . . 1︸ ︷︷ ︸
ln

, or

1 . . . 1︸ ︷︷ ︸
l1

0 1 . . . 1︸ ︷︷ ︸
l2

0 . . . 0 1 . . . 1︸ ︷︷ ︸
ln

0,

depending on whether the final element is 0 or 1. Note that
the lengths of the sub-strings of 1s satisfy 0 ≤ lk < x2. We
will now show that the existence of such a sub-string implies
¬(ii) by considering two cases.

Case 1: k2 ≤ k1+ l1. In this case the sub-string sd contains
at most z1 0s, and so n ≤ z1 + 1. The pigeonhole principle
then demonstrates that there must be an integer 1 ≤ k ≤ n
such that

lk ≥
⌈
k2 − z1

n

⌉
.

To see this, note that sd has at least k2 − z1 1s, and these
must be allocated into n pigeonholes corresponding to the n
sub-strings of 1s. This implies that

x2 > lk ≥
⌈
k2 − z1

n

⌉
≥

⌈
k2 − z1
z1 + 1

⌉
=

⌊
k2

z1 + 1

⌋
and ⌊k2/(z1 + 1)⌋ ≥ min{⌊k2/(z1 + 1)⌋, ⌈x1/z1⌉} as required.

Case 2: k2 > k1+ l1. Let s′d denote the sub-string obtained
by removing the first l1 elements of sd, and also removing
elements from the end of sd, until s′d has length k1. This sub-
string takes the form

s′d =


0 1 . . . 1︸ ︷︷ ︸

l2

0 1 . . . 1︸ ︷︷ ︸
l3

0 . . . 0 1 . . . 1︸ ︷︷ ︸
lm+1

, or

0 1 . . . 1︸ ︷︷ ︸
l2

0 1 . . . 1︸ ︷︷ ︸
l3

0 . . . 0 1 . . . 1︸ ︷︷ ︸
lm+1

0,

depending on whether the final element is 0 or 1. Since s′d
satisfies the AnyHit constraint

(
x1

k1

)
, it contains at most z1

zeros, and so m ≤ z1. Therefore, in this case the pigeonhole
principle implies that at least one of the lengths lk must satisfy

lk ≥
⌈x1

m

⌉
≥

⌈
x1

z1

⌉
.

This implies x2 > lk ≥ ⌈x1/z1⌉ ≥ min{⌊k2/(z1 + 1)⌋, ⌈x1/z1⌉}
as required.

The two theorems above complete the relation graph be-
tween the different types of weakly-hard constraints. Now that
we have a complete picture, we can start investigating sets Λ
of L constraints, Λ = {λ1, . . . , λL}.

1Strictly speaking if s is too short, then the sequence s′ resulting from this
process might have length less than min{k1, k2} which would mean that the
statement s′ ∈ S is ill defined. In this case 0s should only be removed until s′
has length min{k1, k2}. This will still result in a sequence that satisfies the
AnyHit constraint but violates the RowHit constraint. All the given arguments
remain valid for such an s′, since they only depend on inequalities based on
the number of 0s in particular sub-strings of length k1 as guaranteed by the
AnyHit constraint (note in Case 1 it is perfectly valid for l1 = 0).



B. Handling sets of weakly-hard constraints Λ

We extend the theory to the case in which τ is subject
to an arbitrary set of constraints of the form presented in
Definition 3. First, we extend the satisfaction from Definition 5
and obtain

SN (Λ) =
⋂
λ∈Λ

SN (λ) (2)

where
⋂

is the generalised intersection. We use τ ⊢ Λ to
denote that τ satisfies all the constraints in the set Λ. This
implies that each word w ∈ SN (Λ) must belong to the satis-
faction set of all the constraints in Λ. Trivially, Equation (2)
allows us to extended Definitions 5 and 6 to define constraint
dominance for sets of constraints.

Constraint dominance significantly reduces the problem
complexity when working with sets of weakly-hard con-
straints, Λ. If the constraint set supports different types of
weakly-hard constraints, it can be beneficial to find an equiv-
alent set of constraints with minimal cardinality.

To minimise the number of constraints in the problem
formulation, the constraint dominance is utilised in order to
find the minimal cardinality, equivalent subset. Utilising the
comprehensive picture the theorems provide, we propose the
notion of a dominant set, thus simplifying the analysis of
weakly-hard systems subject to multiple constraints.

Definition 10 (Dominant Set). The dominant set Λ∗ of a
set of weakly-hard constraints Λ is defined as the smallest
cardinality subset of Λ representing an equivalent set of
constraints. Formally, Λ∗ ⊆ Λ where

(i) λi, λj ∈ Λ∗ ⇒ λi ̸≡ λj , ∀i ̸= j,
(ii) λi, λj ∈ Λ∗ ⇒ λi ⪯̸ λj , ∀i ̸= j,

(iii) λi ∈ Λ \ Λ∗ ⇒ ∃λj ∈ Λ∗ s.t. λj ⪯ λi.

From Definition 6, a weakly-hard constraint λi dominates
λj if and only if S (λi) ⊆ S (λj). Thus, excluding all the
dominated constraints from Λ does not change the resulting
satisfaction set. The equivalence between the constraint set and
its dominant set is trivial considering the respective satisfaction
sets:

S (Λ∗) =
⋂

λ∈Λ∗

S (λ) =
⋂
λ∈Λ

S (λ) = S (Λ) .

In the following section, we present our tool,
WeaklyHard.jl, and use the theorems presented in this
section and the dominance between constraints to simplify
the analysis of sets of weakly-hard constraints.

IV. WeaklyHard.jl

In this section we introduce WeaklyHard.jl2, a scalable
tool for analysing (sets of) weakly-hard constraints of different
types. The tool facilitates the analysis of weakly-hard tasks
providing functions to:

(i) compare two arbitrary weakly-hard constraints or two sets
of weakly-hard constraints, obtaining answers about their
dominance,

2https://github.com/NilsVreman/WeaklyHard.jl

(ii) translate a weakly-hard constraint or a set of weakly-
hard constraints into a corresponding automaton, that
represents all the sequences that belong to the satisfaction
set of the set of constraints,

(iii) produce all sequences of arbitrary length that satisfy a
set of weakly-hard constraints, i.e., the satisfaction set.

We distribute WeaklyHard.jl as an open-source package,
written in the Julia programming language [6]. Julia is a script-
ing language with Just-In-Time compilation. The language
design is centered upon two core concepts: type-stability and
function specialisation through multiple-dispatch. The type-
stable compilation provides an implementation that is close to
the hardware, resulting in efficient code execution. Multiple-
dispatching allows us to write a user-friendly code library.
Additionally, Julia’s built in package manager simplifies the
distribution of non-proprietary packages.

A task subject to any weakly-hard constraint (from Defi-
nition 3) can be represented using an automaton. Automata
have been used in the analysis of networked systems [19],
[33], schedulability [11], [12], [39], and control systems [21],
[22], [26], [32]. In this paper, we decided to constrain the
automaton structure, thinking about the possible use of the
automaton, e.g., generating a monitor to check whether a
constraint is satisfied. In our representation, vertices encode
the task’s state, i.e., the relevant suffix of the sequence of
job outcomes. Similarly, edges are associated with a feasible
outcome (hit or miss) and encode the transitions from one
state to another. Feasibility here refers to the fact that deadline
misses are not allowed if the constraint would not permit them.
The outcome sequences acquired from all random walks in the
automaton correspond to the satisfaction set of the weakly-
hard constraint represented by the automaton.

Due to their combinatorial nature, weakly-hard systems are
inherently complicated to analyse. Their complexity becomes
apparent in the size of the automaton, and evidently grows
when the window length of the constraint increases. In the
following, we present a scalable approach for generating
automata representations of weakly-hard constraints.

A. Weakly-hard constraints as automata

Suppose that τ ⊢ λ. We use Gλ = (Vλ, Eλ) to indicate
the directed labeled graph Gλ corresponding to the automaton
representation of τ . Here, Vλ represents the set of vertices
in the graph and Eλ represents the directed edges between
vertices (also denoted transitions). Each vertex vi ∈ Vλ

represents a word wi ∈ S (λ). With a slight notational abuse,
vertices vi will occasionally (when evident from context) be
treated as the word they represent, wi. The transition ei,j ∈ Eλ

corresponds to a tuple ei,j = (vi, vj , ci,j), where the vertex
pair vi, vj ∈ Vλ denotes the tail and head of the transition, and
the character ci,j ∈ Σ corresponds to the transition’s label. A
transition ei,j is feasible if and only if the concatenation of
the character ci,j to the word wi satisfies λ. Formally:

ei,j ∈ Eλ ⇔ (wi (2, |wi|) , ci,j) = wj ⊢ λ.



Finally, for two vertices vi, vj ∈ Vλ we say that vj is a direct
successor of vi if there exists a transition ei,j ∈ Eλ. Without
loss of generality, we will assume that each vertex vi ∈ Vλ can
have at most two direct successors with distinct transition out-
comes, i.e., one successor vj1 through ei,j1 = (vi, vj1 , 1) and
(if permissible) one successor vj0 through ei,j0 = (vi, vj0 , 0).

B. Automaton construction

The naïve approach of constructing the automaton Gλ is
both time consuming and memory intensive (including |Sk (λ)|
vertices, where k is the window length of λ). In order to
improve performance and scalability, we include the following
optimisations:

(i) representing words as bit strings,
(ii) minimising the automata size by combining equivalent

vertices during the automata generation, and
(iii) representing large sets of constraints with their dominant

subset.
Support for bit string operations (like shifting) is essential for
efficient sequence management. Logical and bitwise opera-
tions are directly supported by all processors, thus they are
highly optimised and require a minimal amount of instruction
cycles. We use the following notation: & is the bitwise and, |
is the bitwise or, and ≪ is the logical left-shift.

Each word w ∈ S (λ) is a sequence of outcomes and can
therefore be interpreted as a string of bits – recall that an
outcome is a character in Σ = {0, 1}. The rightmost character
in w is the outcome of the last job, e.g., w = 001 implies
that the last deadline was hit, but the two previous ones were
missed. Assuming that the task τ experienced the outcomes
w and the next outcome is c ∈ Σ, then the new sequence of
outcomes is w′ = (w ≪ 1) | c.

The size of the naïve automaton can be reduced substan-
tially by combining vertices that would otherwise result in
language-equivalent states [17]. Two vertices vi1 , vi2 ∈ Vλ are
considered equivalent if they share the same direct successors
with the same transition outcomes. As an example, consider
the AnyHit constraint λ =

(
1
2

)
. Trivially there are only

three feasible vertices in the naïve automaton, since there are
2k = 4 words in Σk and w = 00 is infeasible. The words
w1 = 11 and w2 = 01 are equivalent since they share the
same direct successors with the same transition outcomes, i.e.,
(w1 ≪ 1) |0 = (w2 ≪ 1) |0 and (w1 ≪ 1) |1 = (w2 ≪ 1) |1,
considering the window k = 2. Intuitively, the fact that it is
possible to combine vertices comes from the realisation that
a task’s history, prior to the last k job outcomes, is irrelevant.
Combining the equivalent vertices results in a new vertex
representing the word w = w1 & w2.

Finally, for sets of weakly-hard constraints Λ we construct
the graph GΛ∗ for the dominant set Λ∗ ⊆ Λ. Since S (Λ∗) =
S (Λ), it also follows that GΛ∗ ≡ GΛ.

We generate the minimal automaton Gλ as presented in
Algorithm 1. The automaton is initialised with a single vertex
corresponding to the word w1 = 1n, v1 = (1 ≪ n)− 1. Here,
n is the smallest number of hits required in a window to meet
the constraint λ, e.g., n = 1 for λ = ⟨3⟩ or n = 2 for

〈
2
5

〉
. As

Algorithm 1 Generation of the minimal automaton represen-
tation Gλ corresponding to a weakly-hard constraint λ.
1: procedure BUILDAUTOMATON(λ)
2: Vλ ← {v1 = (1≪ n)− 1}
3: Eλ ← ∅, Q = {v1}
4: while Q ̸= ∅ do
5: vi ← pop (Q)
6: vj0 ← compact (λ, (vi ≪ 1) | 0)
7: vj1 ← compact (λ, (vi ≪ 1) | 1)
8: if vj0 ⊢ λ then
9: if vj0 ̸∈ Vλ then

10: Vλ ← Vλ ∪ {vj0}
11: Q← Q ∪ {vj0}
12: Eλ ← Eλ ∪ {ei,j0 = (vi, vj0 , 0)}
13: if vj0 ̸∈ Vλ then
14: Vλ ← Vλ ∪ {vj1}
15: Q← Q ∪ {vj1}
16: Eλ ← Eλ ∪ {ei,j1 = (vi, vj1 , 1)}

return Gλ = (Vλ, Eλ)

long as there exists uninitialised vertices vi, its successors vj0
and vj1 are created and passed through a function in order to
compact them. This step reduces the new word to the minimal,
equivalent word that would still satisfy λ. In particular, if either
(vi ≪ 1) |0 or (vi ≪ 1) |1 return an existing vertex vi0 or vi1 ,
then vj0 and vj1 are reduced to the corresponding existing one.
If the resulting words would satisfy λ, they are properly added
to the automaton. Note that it is only required to verify that
the successor following a deadline miss satisfy the constraint.

Notice that minimality comes from the fact that we include a
vertex in Gλ only if there exists no other vertex that represents
the same sequence. In fact, each new vertex added to the
automaton represents a feasible sequence that no other vertex
is already encoding. If a potential new vertex represents a
sequence that is equivalent to another existing vertex, the
algorithm connects the existing vertex instead of creating a
new one.

C. Scalable automata generation

Intuitively, the time required for generating an automaton is
directly correlated to its size, i.e., more vertices lead to a larger
exploration time and hence to a larger automaton-construction
time. Additionally, the automata-based representation can be
used in embedded devices, e.g., to monitor the satisfaction of
a constraint. Thus, space and memory requirements create a
clear need for the automaton to be minimal.

We provide a brief discussion on the minimum number of
vertices needed to express the automaton corresponding to
the weakly hard constraints presented in Definition 3. The
structure of the minimal automaton depends on the type of
constraint. For example, to describe an AnyHit constraint(
xah

kah

)
we need to keep track of the number and the position

of the deadline hits we encountered in the past kah outcomes,
giving us a number of vertices that corresponds to the binomial
coefficient kah choose xah. The AnyMiss constraint can be
reduced to the AnyHit constraint and hence we easily obtain
the number of its vertices. For the RowMiss constraint, the
number of vertices is also obvious, as we need to count the
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Fig. 1. Minimal automata Gλ1
, Gλ2

, and GΛ representing respectively λ1, λ2, and Λ = {λ1, λ2} from the Example in Section IV-D.

number of consecutive deadlines that have been missed, and
return to the initial state as soon as the following outcome is
a hit. Denoting with s (λ) the function that counts the number
of vertices of the minimal automaton corresponding to the
constraint λ, we obtain:

AnyHit : λah =
(
xah

kah

)
⇒ s (λah) =

kah!

xah! (kah − xah)!

AnyMiss : λam =
(
xam

kam

)
⇒ s (λam) =

kam!

xam! (kam − xam)!

RowMiss : λrm =
〈
xrm

krm

〉
⇒ s (λrm) = xrm + 1

e.g., the minimal automaton for the AnyMiss constraint
(
5
20

)
includes 15 504 vertices.

The RowHit constraint,
〈
xrh

krh

〉
is more interesting. When

krh < 2xrh, the constraint reduces to the hardest constraint
λ, hence the automaton has a single vertex. If krh = 2xrh, it
is possible to have a single deadline miss, that can only appear
before a sequence of xrh has been recorded, hence the corre-
sponding automaton has xrh +1 vertices. If krh = 2xrh +1,
the number of vertices of the automaton are xrh + 2 and
subsequent values can be found using recursion. Specifically,

RowHit : λrh =
〈
xrh

krh

〉
⇒ s (λrh) =

1 krh < 2xrh

xrh + 1 krh = 2xrh

xrh + 2 krh = 2xrh + 1

2 s (
〈

xrh

krh−1

〉
)− s (

〈
xrh

krh−2

〉
) + 1 2xrh + 1 < krh < 3xrh

s (
〈

xrh

krh−1

〉
) + xrh krh ≥ 3xrh.

In contrast to the AnyHit or AnyMiss constraints, the size of
the minimal automaton corresponding to the RowHit constraint
is linear in the window length krh in stationarity, i.e., when
krh ≥ 3xrh. The linearity property also holds for the RowMiss
constraint. Intuitively, since the size of the minimal automaton
is directly correlated to the scalability, RowHit and RowMiss
constraints are preferred for large problems.

D. Example

We now provide an example to illustrate how the automata
differ between constraint types. In particular, we focus on
AnyHit and RowHit constraints, that have been the subject
of our theoretical investigation.

Given the two weakly-hard constraints λ1 =
(
1
3

)
and

λ2 =
〈
2
6

〉
, we apply Theorems 1 and 2 and confirm that there

is no partial ordering between the constraints, i.e. λ1 ⪯̸ λ2 and
λ2 ⪯̸ λ1. Following the steps in Algorithm 1, we generate the
minimal automaton representations of the two constraints, i.e.,
Gλ1

and Gλ2
. The automaton representing the constraint set

Λ = {λ1, λ2}, i.e., GΛ, is also generated and subsequently
minimised. The results are shown in Figure 1, where the left-
most, middle, and rightmost automata correspond respectively
to Gλ1

, Gλ2
, and GΛ.

One of the most important novelties presented in this
paper is the possibility to analyse weakly-hard constraint
sets containing all the weakly-hard constraints types from
Definition 3. Prior work proposed alternative solutions to the
automaton generation problem, handling either a specific type
of constraint [32], or a separate solution for each individual
constraint type [21]. Our aim is to switch the focus to the
applicability and scalability of the constraint representation,
and hence substitute AnyHit and AnyMiss with RowHit and
RowMiss whenever possible. Being able to analyse sets of
constraints in a scalable way brings us one step closer to
the analysis of real systems, in which window lengths are
quite large. Additionally, for real systems it is often easier to
constrain hits (e.g., via execution in a protected environment
without interference) rather than the maximum number or the
pattern of deadline misses.

E. WeaklyHard.jl functionality

The most relevant functions provided by WeaklyHard.jl
are summarised in Table I.3 In addition to the automata gen-

3The package includes a README file that guides the user through the
setup of the package and provides simple usage examples. The only prereq-
uisite is the Julia interpreter and compiler, available at https://julialang.org.



TABLE I
FUNCTIONS OFFERED BY WeaklyHard.jl.

Function Description

AnyHitConstraint(x, k) Defines a constraint λ =
(x
k

)
AnyMissConstraint(x, k) Defines a constraint λ =

(x
k

)
RowHitConstraint(x, k) Defines a constraint λ =

〈x
k

〉
RowMissConstraint(x) Defines a constraint λ = ⟨x⟩
is_satisfied(Lambda, w) Returns true if w ⊢ Λ, i.e., if the word w satisfies all the constraints in Λ, and false otherwise

(note: can be invoked also passing a single constraint λ as parameter)

is_dominant(lambda1, lambda2) Returns true if λ1 ⪯ λ2 and false otherwise

is_equivalent(lambda1, lambda2) Returns true if λ1 ≡ λ2 and false otherwise

dominant_set(Lambda) Returns Λ∗ ⊆ Λ

build_automaton(Lambda) Returns the automaton GΛ (note: can be invoked also passing a single constraint λ as parameter)

minimize_automaton!(G) Returns the minimal representation of GΛ (note: changes GΛ)

random_sequence(G, N) Returns a word w, |w| = N obtained through an N -step random walk in GΛ
all_sequences(G, N) Returns the satisfaction set SN (Λ) corresponding to GΛ

eration, the toolbox provides functions to compare constraints
and obtain answers about their dominance and equivalence,
to reduce a set of constraints to their dominant subset, and
to generate sequences of arbitrary length satisfying sets of
weakly-hard constraints. We also included a function that
generate the satisfaction set SN (Λ) from a graph GΛ. In
addition to the functions presented in Table I, additional
functions are included as syntactic sugar for a better user
experience.

V. EXPERIMENTAL EVALUATION

We evaluate here the performance of WeaklyHard.jl.4

First, we assess the scalability of the automaton gener-
ation, comparing WeaklyHard.jl with the state-of-the-art
WHRTgraph [21], [22]. Then, we conduct a sensitivity analysis
of WeaklyHard.jl to determine which parameters affect the
execution time for the automata generation in cases that
cannot be handled with other tools, e.g., sets of weakly-hard
constraints. We provide results on how the type of constraints,
maximum window length, and constraint set cardinality affect
the computation time needed to generate the automaton. Fi-
nally, we investigate the average cardinality of the dominant
set as a function of the cardinality of a set of constraints.

A. Comparing WeaklyHard.jl and WHRTgraph

The literature contribution that is closest to our research
is WHRTgraph [21], [22]. WHRTgraph’s analysis of weakly-
hard tasks is also based on the construction of automata.
While WHRTgraph handles only one weakly-hard constraint
at a time, it can construct the automaton that correspond to
AnyHit and RowHit constraints, making it the reference in
terms of analysis capabilities. WHRTgraph is implemented in
MATLAB, while WeaklyHard.jl is implemented in Julia.
Hence, comparing the execution times of the two (on their

4All the reported experiments ran on an Intel Xeon E5-2620 v3 @ 2.40GHz
CPU with 126GB RAM memory.

own) is pointless. Furthermore, we are more interested in as-
sessing the scalability to an increase in the constraint window
size than the absolute numbers for the execution times. We
therefore define a baseline case, for a fair comparison, i.e.,
the reported results are fractions and multiples of the baseline,
which is different for each tool and constraint type.

To test the scalability of the automaton generation, we ask
both WeaklyHard.jl and WHRTgraph to generate the automata
that correspond to the AnyHit

(
x
k

)
and RowHit

〈
x
k

〉
constraints

for x ∈ {1, 2, . . . , 10}, k = x + i and i ∈ {0, 1, . . . , 10}.
We divide the obtained results by the baseline value, i.e., the
execution time needed for the corresponding tool to generate
the automaton for the given constraint type, x = 2 and k = 4.5

Figure 2 shows the mean value of the execution time
for the automaton generation, divided by the correspond-
ing baseline value, using a logarithmic y-axis. The base-
line computation times for AnyHit constraint are 3.7µs for
WeaklyHard.jl and 32.4ms for WHRTgraph. On the contrary,
for a RowHit constraint, the baseline computation time is
3.2µs for WeaklyHard.jl and 17.7ms for WHRTgraph. Due
to the extensive computational time necessary to build the
automata using WHRTgraph, each automaton was built 30 times
(i.e., each point in the figure is the mean of 30 executions).
WeaklyHard.jl is significantly faster, thus, each automata
was built 100 000 times to reduce the execution time variance.
WHRTgraph represents a weakly-hard constraint with a

slightly different, yet equivalent automaton to the one gen-
erated by WeaklyHard.jl. In particular, the automaton gen-
erated by WHRTgraph has fewer vertices and weights on the
edges encode the number of consecutive deadline misses
allowed between the vertices. Thus, a transition between two

5The choice of the baseline case reflects the simplest constraint that is
correctly handled by both WeaklyHard.jl and WHRTgraph. Comparing the
methods, we unveiled that WHRTgraph is unable to find an automaton for
constraints in which x = 1. The two plots for WHRTgraph in Figure 2 do not
contain results for x = 1 (white filled markers) precisely due to this problem.
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Fig. 2. Execution time comparison for AnyHit and RowHit constraints with WeaklyHard.jl and WHRTgraph [21] increasing the difference between window
size and number of hits constrained. Baseline values are reported on top of the corresponding plots.

vertices in WHRTgraph is not equivalent to one outcome (as for
WeaklyHard.jl), reducing flexibility, i.e., making it harder
for example to automatically generate code to monitor the
outcomes of task executions. Multiple successive outcomes
for each transition also complicate the handling of sets of
weakly-hard constraints. In terms of scalability, an automaton
representation with fewer nodes may sound more efficient.
However, we show that WeaklyHard.jl scales better than
WHRTgraph by more than an order of magnitude. The baseline
numbers show that WeaklyHard.jl is also significantly faster
in absolute terms.

Comparing the scalability of the two tools for AnyHit
constraints (leftmost plots), we observe that WeaklyHard.jl
is more than an order of magnitude faster than WHRTgraph.
On the contrary, for RowHit constraints (rightmost plots), we
experience a speedup of almost two orders of magnitude for
high values of i = k − x. The scalability of the RowHit
constraints are further investigated in the following subsection.

B. Evaluating RowHit constraints

In the previous subsection we discussed the scalability
of WeaklyHard.jl compared to the state-of-the-art. Despite
improvements of more than an order of magnitude (not con-
sidering the baseline), the time necessary to construct the
automata for AnyHit constraints grows rapidly with increasing
window lengths. Motivated by the ongoing discussion on the
practical importance of consecutive deadline hits [2], [36] and
the scalability considerations presented in Section IV-C, we
now perform an extensive evaluation of the scalability of the
RowHit constraints.

Using WeaklyHard.jl, we generate the automaton corre-
sponding to the RowHit

〈
x
k

〉
constraints for x ∈ {1, 2, . . . , 15},

k ∈ {x, x+1, . . . , 100}. To the best of our knowledge, this is
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Fig. 3. Mean execution time of the generation RowHit constraint automaton.

the first research work that generates automata representations
of weakly-hard constraints with window lengths above 100.
Figure 3 displays the mean execution time over 100 executions
for the automata generation using a logarithmic scale, showing
a piecewise exponential growth of execution time with some
jumps. Despite having constraints with window lengths up to
k = 100, the worst reported execution time is below 7 seconds;
reinforcing the arguments in favour of using RowHit rather
than AnyHit constraints.

Another interesting consideration is related to the jumps in
the execution time that each line shows when reaching certain
values of x and k. This follows from the choice of using
integers to represent words in WeaklyHard.jl. For constraints
where 2x+k ≥ 64, 64 bit integers are not enough to represent
all sequences, and WeaklyHard.jl consequently converts the
sequence representation to big integers (using more than 64
bits). This representation requires additional resources (mem-
ory and computation), hence producing execution time jumps.
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Fig. 4. Execution time comparison for the generation of the automaton for sets of constraints with increasing maximum window sizes max k. Average values
are reported alongside the areas between minimum and maximum execution times.

C. Analysing sets of weakly-hard constraints

WeaklyHard.jl is the first tool that provides the ability to
analyse sets of weakly-hard constraints. In the following we
conduct a sensitivity analysis to assess the scalability of the
automaton generation for a set of weakly hard constraints. In
particular, we are interested in finding how the window size
affects the execution time of the tool, and how the composition
of the set influences the execution time.

We randomise dominant sets of constraints, imposing that
at least one of the constraints has a window size of kmax ∈
{10, 11, . . . , 30}. We generate sets with either |Λ∗| = 2 or
|Λ∗| = 4. We allow these sets to include one RowHit constraint
or none. The results of our study are shown in Figure 4.
For each of the values of kmax in the figure, we generate
50 dominant sets Λ∗. The figure shows the average execution
time in seconds (as a line) and the area representing the span
between minimum and maximum execution time.

The first conclusion that we can draw is that the average ex-
ecution times follow straight lines in a logarithmic scale, thus
clearly pointing to the exponential time complexity inherent to
expressive task models, such as the weakly-hard model [29].

When the cardinality of the set |Λ∗| increases (i.e., com-
paring the two leftmost and the two rightmost plots) the
maximum execution time does not change significantly. In fact,
states that would have been reachable with fewer constraint
become unreachable due to the additional constraints pruning
the state-space. However, we experience a slight reduction in
the execution time’s variance, which follows from the nature
of the dominant set. Comparing two dominant sets, Λ∗

1 and
Λ∗
2, with the same kmax: when |Λ∗

1| = 2 and |Λ∗
2| = 4, the

set Λ∗
2 must include less restrictive constraints (otherwise they

would dominate the other constraints in the set). Hence, the
set Λ∗

2 is less likely to be trivial to analyse.
Finally, including a RowHit constraint in the set Λ∗ in-

creases the execution time by an order of magnitude. This fol-
lows from the complex interconnections between the RowHit
and remaining weakly-hard constraints. Particularly, for the
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Fig. 5. Average cardinality of the dominant set Λ∗ as a function of |Λ| with
kmax = 100 for 1000 randomly generated constraint sets Λ.

AnyHit, AnyMiss, and RowMiss constraints it is sufficient to
count the deadline hits of the jobs currently in the window;
however, the RowHit constraints need to keep additional track
of when they appeared. This is further reinforced by the fact
that when a dominant set includes a RowHit constraint, the
other constraints in the set have to be very conservative in
order to neither dominate nor be dominated by it. However, we
remark that WeaklyHard.jl is able to generate an automaton
for a set Λ∗ of 4 constraints with kmax = 30, including a
RowHit constraint, in less than 200 seconds.

D. Determining the dominant constraint set

In Section V-C we investigated dominant sets Λ∗ with
cardinality |Λ∗| ∈ {2, 4}. Here we justify why this is a relevant
benchmark despite the low cardinality.

We select a maximum window size kmax = 100. The
window size is large enough that we can find an expressive
variety of constraints without partial ordering. We randomly
generate sets Λ containing |Λ| ∈ {1, . . . , 100} constraints. For
each value of |Λ| we generate 1000 different sets, excluding
all the trivial constraints that would reduce to λ and λ. We



then compute the dominant set Λ∗ corresponding to each set.
Figure 5 shows the average cardinality of Λ∗ (solid line) and
the experienced range (area).

As can be seen, most constraint sets reduce to dominant sets
with cardinality less than 4, thus motivating our investigation
of the automaton generation execution time. Generally, it is
also interesting that additional constraints tends to reduce the
cardinality of Λ∗, after a peak is reached. This is however not
surprising seeing as adding constraints increases the chances
of the added constraints being dominant over some of the
constraints in the set.

VI. CONCLUSION

The research behind this paper is motivated by the attention
the weakly-hard model is receiving in both academic and
industrial contexts. The paper primarily proposes two contribu-
tions: (i) two novel theorems that complete the relation graph
between weakly-hard constraints of different types, and (ii) an
open-source tool, WeaklyHard.jl, that helps in the analysis
of weakly-hard tasks. The tool includes functions to relate
different weakly-hard constraints to one another, and functions
to generate automata that encode the feasible outcomes of
weakly-hard tasks.

We envision WeaklyHard.jl to be used for (i) the analysis
of complex tasksets, in which tasks are subject to different
weakly-hard constraints, possibly with large windows, (ii) the
generation of monitoring code that provides runtime checks
for the satisfaction of weakly-hard constraints. As an ex-
ample, to validate the conjectures that became the theorems
of Section III-A, we used WeaklyHard.jl to generate the
satisfaction sets for various pairs of AnyHit and RowHit
constraints. We then calculated the intersection between the
generated sets to verify that our conjecture held for the specific
cases under test.

We analyse the scalability of WeaklyHard.jl and the dom-
inance between different constraints. Furthermore, we build
dominant sets of constraints. To the best of our knowledge,
WeaklyHard.jl is the first tool that enables the analysis of
tasks that satisfy sets of weakly-hard constraints.
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