BOMBS Functions
Version 0.1.0

DAVID GOMEZ-CABEZA

David.Gomez@ed.ac.uk
May 21, 2021

1 Model Generation

1.1 defModStruct()

Inputs: None

Function: This function allows the user to obtain the dictionary structure
with all the keys for the model generation section so only the values for each
key have to be filled.

Outputs: Dictionary with keys NameF, nStat, nPar, nIlnp, stName, parName,
inpName, eqns, YOeqs, Y0Sim, tols and solver. Values for each key are empty
lists [].

1.2 checkStruct(model_def)

Inputs: Dictionary with the keys specified in defModStruct() and filled val-
ues for each one.

Function: This function checks the contents of the dictionary introduced
(structure from defModStruct()). If everything is correct, then some process-
ing of the values will be done (mostly indexing and extraction of elements
to ease further indexing of structures). If the value for some key has a wrong
structure or content, the function will break (dictionary not returned) and a
message will be printed to help the user identify where the issue is (mostly
information about the key that had not passed the check).

Outputs: Same dictionary introduced with necessary modifications of some
tields to aid it’s use in further sections. If the value for any key is wrong,
nothing will be returned.




1.3 GenerateModel(model_def)

Inputs: Dictionary with the keys specified in defModStruct() and filled
values for each one.

Function: This function takes the information given by the user about the
model and generates a Julia script with the necessary function to simulate
the model.

The 4 functions contained in the script are:

¢ nameODE!(du,u,p,t): Function containing the ODEs of your model.
For more information check https://diffeq.sciml.ai/v2.0/. du
indicates the system of ODEs, u the value of the states, p parameters
and t time.

* nameSteadyState(p,I): Function containing information about the steady
state. This can be a set of equations or an empty function that returns
the same y0 that you introduce. p is the parameter values and I the
y0 values for each state (experimental values that need to be specified
with the name of the state starting with exp).

¢ name_solvecoupledODE(ts, p, sp, inputs, ivss, pre=[]): This is the func-
tion that will allow you to solve the ODE system with different events
(external inputs that change across the experiment, so no fixed param-
eters). ts is the time vector (from 0 to end time every 1), p is the vector
of parameters, sp is the switching times for the external input, inputs is
a matrix with the values for each external inducer for each step, ivss is
the initial values for the model (y0) and pre is the concentration of the
inducers for the steady state done before the start of the experiment (if
any).

* name_SolveAll(ts, pD, sp, inputs, ivss, samps, pre=[]): This function
allows you to simulate your ODEs using multiple instances for the
parameters automatically. The inputs for the function are the same
with the exception of pD (in this case this is the parameter matrix
with all your theta samples to be used for the simulations) and samps
(sampling time vector for the experiment, which might have a different
resolution than 1).

Where name is the name you have given to the model in the key NameF.
Outputs: Same dictionary introduced with the extra key modelpath contain-
ing the path to the file generated.


https://diffeq.sciml.ai/v2.0/

2 Model Simulation

2.1 defSimulStruct()

Inputs: None

Function: This function allows the user to obtain the dictionary structure
with all the keys for the model simulation section so only the values for each
key have to be filled.

Outputs: Dictionary with keys Nexp, finalTime, switchT, y0, prelnd, ulnd,
theta, tsamps, plot and flag. Values for each key are empty lists [].

2.2 checkStructSimul(model_def, simul_def)

Inputs: Dictionary containing the model information and dictionary with
the keys specified in defSimulStruct() and filled values for each one.
Function: This function checks the contents of the dictionary introduced
(structure from defSimulStruct()). If everything is correct, then some process-
ing of the values will be done (mostly indexing and extraction of elements
to ease further indexing of structures). If the value for some key has a wrong
structure or content, the function will break (dictionary not returned) and a
message will be printed to help the user identify where the issue is (mostly
information about the key that had not passed the check).

Outputs: Same dictionary introduced with necessary modifications of some
fields to aid it’s use in further sections. If the value for any key is wrong,
nothing will be returned.

2.3 fileStructInfo()

Inputs: None

Function: This function prints in the console information about the structure
the CSV files need to have in order to be given to BOMBS so experimental
details are extracted from it.

Outputs: None

2.4 defSimulStructFiles()

Inputs: None

Function: This function allows the user to obtain the dictionary structure
with all the keys for the model simulation section (if experimental details
are given with CSV files) so only the values for each key have to be filled.



Outputs: Dictionary with keys ObservablesFile, EventInputsFile, theta,
MainDir, plot, flag. Values for each key are empty lists [].

2.5 extractSimulCSV(model_def, simul_def)

Inputs: Dictionary with the keys specified in defSimulStructFiles() and filled
values for each one.

Function: This function checks that the CSV files introduced exist and if so,
proceeds to extract all the necessary information to populate the values of
the dictionary structure defined in defSimulStruct.

Outputs: Dictionary with the structure defined in defSimulStruct where all
the values for each key have been extracted from the CSV files.

2.6 plotSimsODE(simuls,model_def,simul_def)

Inputs: Simulation results, model definition and simulation definition dic-
tionaries.

Function: This function generates and saves (in the results directory) the
plots for the simulations done by the user. A separate plot for each exper-
iment will be generated, where there will be a subplot for each state and
each inducer of the system.

Outputs: None

2.7 simulateODEs(model_def, simul_def)

Inputs: Model definition and simulation definition dictionaries.

Function: This is the main function of the section, which takes all the in-
formation from the model and simulation structures, simulates the ODEs
system, saves the simulation results in the results folder and generates the
plots if the user has selected the option.

Outputs: Simulation results dictionary plus model definition and simula-
tion definition dictionaries with the savepath key pointing to the saved
files. The simulation definition dictionary has the path and file name split in
savepath and savename.




3 Pseudo-Data Generation

3.1 defPseudoDatStruct()

Inputs: None

Function: This function allows the user to obtain the dictionary structure
with all the keys for the model pseudo-data generation section so only the
values for each key have to be filled.

Outputs: Dictionary with keys Nexp, finalTime, switchT, y0, prelnd, ulnd,
theta, tsamps, plot, flag, Obs, NoiseType and Noise. Values for each key are
empty lists [].

3.2 checkStructPseudoDat(model_def, pseudo_def)

Inputs: Dictionary containing the model information and dictionary with
the keys specified in defPseudoDatStruct() and filled values for each one.
Function: This function checks the contents of the dictionary introduced
(structure from defPseudoDatStruct()). If everything is correct, then some
processing of the values will be done (mostly indexing and extraction of
elements to ease further indexing of structures). If the value for some key
has a wrong structure or content, the function will break (dictionary not
returned) and a message will be printed to help the user identify where the
issue is (mostly information about the key that had not passed the check).
Outputs: Same dictionary introduced with necessary modifications of some
fields to aid it’s use in further sections. If the value for any key is wrong,
nothing will be returned.

3.3 defPseudoDatStructFiles()

Inputs: None

Function: This function allows the user to obtain the dictionary structure
with all the keys for the model pseudo-data generation section (if experi-
mental details are given with CSV files) so only the values for each key have
to be filled.

Outputs: Dictionary with keys ObservablesFile, EventInputsFile, theta,
MainDir, plot, flag, Obs, NoiseType and Noise. Values for each key are

empty lists [].



3.4 extractPseudoDatCSV(model_def, pseudo_def)

Inputs: Dictionary with the keys specified in defPseudoDatStructFiles() and
filled values for each one.

Function: This function checks that the CSV files introduced exist and if so,
proceeds to extract all the necessary information to populate the values of
the dictionary structure defined in defPseudoDatStruct.

Outputs: Dictionary with the structure defined in defPseudoDatStruct
where all the values for each key have been extracted from the CSV files.

3.5 PDatCSVGen(pseudo_res,model_def,pseudo_def)

Inputs: pseudo-data results, model definition and pseudo-data definition
filled structure dictionaries.

Function: This function generates CSV files for each experiment simulated
containing all the necessary information for the pseudo-data. Three files for
each experiment are generated:

¢ Simulations: CSV file with the time vector and the simulation for all
states for each theta given.

¢ Observables: CSV file with the time vector and the pseudo-data gener-
ated for each observable of the system (one trace for each theta vector
introduced).

¢ Event_Inputs: CSV file containing information about the inputs and
change over time (similar to the structure explained in fileStructInfo()).

Outputs: None (but CSV files generated).

3.6 plotPseudoDatODE(pseudo_res,model_def,pseudo_def)

Inputs: pseudo-data results, model definition and pseudo-data definition
dictionaries.

Function: This function generates and saves (in the results directory) the
plots for the pseudo-data generated by the user. A separate plot for each
experiment will be generated, where there will be a subplot for each observ-
able and each inducer of the system.

Outputs: None




3.7 GenPseudoDat(model_def, pseudo_def)

Inputs: Model definition and pseudo-data definition dictionaries.
Function: This is the main function of the section, which takes all the in-
formation from the model and pseudo-data structures (information about
the experiments and osbservabels), simulates the ODEs system, generates
pseudo-data for the observables, saves the simulation and pseudo-data re-
sults in the results folder and generates the plots if the user has selected the
option.

Outputs: Pseudo-data results dictionary plus model definition and pseudo-
data definition dictionaries with the savepath key pointing to the saved files.
The pseudo-data definition dictionary has the path and file name split in
savepath and savename.




4 Maximum Likelihood Estimation

41 defMLEStruct()

Inputs: None

Function: This function allows the user to obtain the dictionary structure
with all the keys for the maximum likelihood estimation section so only the
values for each key have to be filled.

Outputs: Dictionary with keys Nexp, finalTime, switchT, y0, prelnd, ulnd,
tsamps, plot, flag, thetaMAX, thetaMIN, runs, parallel, DataMean, DataEr-
ror, Obs, OPTsolver, MaxTime, MaxFuncEvals. Values for each key are
empty lists [].

4.2 SimToMle(mle_def, simul_def)

Inputs: Dictionaries with 2 separate structures from one of the package
sections sharing one or more keys.

Function: Function that extracts all the values of the second that share keys
with the first dictionary and places them in it. Even though in here we state
as first dictionary mle_def and as second simul_def, this can be any two
dictionaries (it is to follow the structure in the notebook examples).
Outputs: First dictionary (in this case mle_def) with the values of the second
in any shared key.

4.3 checkStructMLE(model_def, mle_def)

Inputs: Dictionary with the model structure and dictionary with the keys
specified in defMLEStruct() and filled values for each one.

Function: This function checks the contents of the dictionary introduced
(structure from defMLEStruct()). If everything is correct, then some process-
ing of the values will be done (mostly indexing and extraction of elements
to ease further indexing of structures). If the value for some key has a wrong
structure or content, the function will break (dictionary not returned) and a
message will be printed to help the user identify where the issue is (mostly
information about the key that had not passed the check).

Outputs: Same dictionary introduced with necessary modifications of some
tields to aid it’s use in further sections. If the value for any key is wrong,
nothing will be returned.




4.4 selectObsSim_te(simul, Obs, stName)

Inputs: Simulation of one experiment, observables of the system (as vector
of strings) and the state names of the model (as vector of strings).
Function: This function automatically extracts the observables of your
model for a given simulation. Operations between states or others are
allowed introduced in the input Obs.

Outputs: Matrix containing the simulation of an experiment for the observ-
ables specified for the system.

4.5 restructInputs_te(model_def, mle_def, expp)

Inputs: Dictionaries containing the information for the model and the MLE
and index of the experiment (from mle_def) that you want to re-structure
the inputs vector.

Function: This function takes the input values for a specified experiment
(expp) and restructures the matrix into a single vector so the package can
use it. This vector will group all the inputs for a specified step together. It is
highly probable that you won’t need to use this function.

Outputs: Vector containing the re-structured inputs. For example, if you
have 2 inputs (inp1, inp2) and a 3 steps experiment, the vector will be organ-
ised as: inp1_stpl, inp2_stpl, inpl_stp2, inp2_stp2, inp1_stp3, inp2_stp3.

4.6 UVloglike(dats, mes, errs)

Inputs: Vector or matrix with experimental data, simulation (of one observ-
able) and errors for your experimental data.

Function: This function computes the univariate Gaussian Log-Likelihood
value between your data and one observable simulation. Sum across time-
points will be computed.

Outputs: Log-likelihood value for a specific observable.

4.7 MVloglike(dats, mes, errs)

Inputs: Vector or matrix with experimental data, simulation (of one observ-
able) and array of co-variances for the data.

Function: This function computes the multi-variate Gaussian Log-Likelihood
value between your data and one observable simulation. Note that a small
number (0.1) is added in the diagonal of the co-variance matrix to ensure
that this is positive definite. Also, since the determinant of these can get



extremely high or low, Infs have been set to the numerical limit of Julia
(1e300).
Outputs: Log-likelihood value for a specific observable.

4.8 plotMLEResults(mle_res,model_def,mle_def)

Inputs: MLE results, model definition and MLE definition dictionaries.
Function: This function generates and saves (in the results directory) the
plots for the maximum likelihood estimation results (convergence plots and
simulations against data plots). A separate plot for each experiment will
be generated, where there will be a subplot for each observable and each
inducer of the system.

Outputs: None

4.9 defCrossValMLEStruct()

Inputs: None

Function: This function allows the user to obtain the dictionary structure
with all the keys for the cross-validation of the maximum likelihood estima-
tion results so only the values for each key have to be filled.

Outputs: Dictionary with keys Nexp, finalTime, switchT, y0, prelnd, ulnd,
tsamps, plot, flag, thetaM, DataMean, DataError, Obs. Values for each key
are empty lists [].

410 checkStructCrossValMLE(model_def, cvmle_def)

Inputs: Dictionary with the model structure and dictionary with the keys
specified in defCrossValMLEStruct() and filled values for each one.
Function: This function checks the contents of the dictionary introduced
(structure from defCrossValMLEStruct()). If everything is correct, then some
processing of the values will be done (mostly indexing and extraction of
elements to ease further indexing of structures). If the value for some key
has a wrong structure or content, the function will break (dictionary not
returned) and a message will be printed to help the user identify where the
issue is (mostly information about the key that had not passed the check).
Outputs: Same dictionary introduced with necessary modifications of some
fields to aid it’s use in further sections. If the value for any key is wrong,
nothing will be returned.

10



411 plotCrossValMLEResults(cvimle_res,model_def,cvmle_def, simul_def)

Inputs: cross-validation of MLE results, model definition, cross-validation
of MLE definition and simulations dictionaries.

Function: This function generates and saves (in the results directory) the
plots for the cross-validation of the maximum likelihood estimation results .
A separate plot for each experiment will be generated, where there will be a
subplot for each observable and each inducer of the system.

Outputs: None

412 CrossValMLE(model_def, cvimle_def)

Inputs: Model definition and cross-validation of MLE results definition
dictionaries.

Function: This is the main function to run the cross-validation of the MLE
results, which takes all the information from the model and cross-validation
structures (information about the experiments and osbservabels), simulates
the ODEs system, computes the log-likelihood for each theta sample given,
selects the best theta vector having seen the new set of data and generates
the plots if the user has selected the option.

Outputs: Cross-validation results dictionary plus model definition and
cross-validation definition dictionaries with the savepath key pointing to
the saved files. The cross-validation definition dictionary has the path and
file name split in savepath and savename.

413 finishMLEres(mle_res, model_def, mle_def)

Inputs: MLE results, model definition and MLE definition dictionaries.
Function: This function saves the MLE results and plots in the common
BOMBS structure. This function might be needed if parallelisation is desired
since in that case the user needs to set the optimisation (not fully automated
yet).

Outputs: MLE results dictionary plus model definition and MLE definition
dictionaries with the savepath key pointing to the saved files. The MLE def-
inition dictionary has the path and file name split in savepath and savename.

4,14 MULEtheta(model_def, mle_def)

Inputs: Model definition and maximum likelihood estimation definition
dictionaries.

11



Function: This is the main function of the section, which takes all the in-
formation from the model and MLE structures (information about the ex-
periments and osbservabels), generates the necessary scripts (cost-function
related), runs the optimisation (for as many runs as the user has selected
and in parallel if selected), extracts the best results and generates the plots if
the user has selected the option.

Outputs: MLE results dictionary plus model definition and MLE definition
dictionaries with the savepath key pointing to the saved files. The MLE def-
inition dictionary has the path and file name split in savepath and savename.

12



5 Stan Inference of Parameters

5.1 defBayInfStruct()

Inputs: None

Function: This function allows the user to obtain the dictionary structure
with all the keys for the Bayesian inference section (using Stan) so only the
values for each key have to be filled.

Outputs: Dictionary with keys Priors, Data, StanSettings, flag, plot, runInf
and MultiNormFit. Values for each key are empty lists [].

5.2 defBayInfDataStruct()

Inputs: None

Function: This function allows the user to obtain the dictionary structure
with all the keys for data structure necessary for the Bayesian inference
section so only the values for each key have to be filled.

Outputs: Dictionary with keys Nexp, finalTime, switchT, y0, prelnd, ulnd,
tsamps, Obs, DataMean and DataError. Values for each key are empty lists [].

5.3 defBayInfDataFromFilesStruct()

Inputs: None

Function: This function allows the user to obtain the dictionary structure
with all the keys for data structure introduced with CSV files necessary for
the Bayesian inference section so only the values for each key have to be
filled.

Outputs: Dictionary with keys Obs, Observables, Inputs and y0. Values for
each key are empty lists [].

5.4 defBasicStanSettingsStruct()

Inputs: None

Function: This function allows the user to obtain the dictionary structure
with all the keys for Stan settings structure necessary for the Bayesian infer-
ence section so only the values for each key have to be filled.

Outputs: Dictionary with keys cmdstan_home, nchains, nsamples, nwarmup,
printsummary, init, maxdepth, adaptdelta and jitter. Values for each key are

empty lists [].

13



5.5 convertBoundTo2(x, bo, up)

Inputs: univariate samples for a parameter (x), lower (bo) and upper (up)
bounds for the range to re-map the samples to.

Function: This function takes vector of samples for a parameter and re-maps
it’s values to a different numeric region specified by the upper and lower
bounds.

Outputs: re-mapped samples to the numeric region specified.

5.6 fitPriorSamps(priorsamps, model_def)

Inputs: samples for a parameter or set of parameters and model definition
structure.

Function: This function takes all the samples for each parameter in the
model and fits a series of distributions (Beta, Exponential, LogNormal, Nor-
mal, Gamma, Laplace, Pareto, Rayleigh, Cauchy, Uniform) selecting the
one with better likelihood. Re-parameterisation (in Stan meaning) of the
distributions to be in the -2,2 region will be attempted.

Outputs: Dictionary with three entries (pars, transpars, pridis) with strings
containing the information of the fitted priors in Stan format.

5.7 fitPriorSampsMultiNorm(priorsamps, model_def)

Inputs: samples for a parameter or set of parameters and model definition
structure.

Function: This function takes all the samples for each parameter in the
model and fits a Normal, LogNormal and Uniform distribution selecting
the one with better likelihood. In this case, Normal and LogNormal distri-
butions will result in a multi-variate Normal distribution for the prior fit.
Re-parameterisation (in Stan meaning) of the distributions to be in the -2,2
region will be attempted.

Outputs: Dictionary with three entries (pars, transpars, pridis) with strings
containing the information of the fitted priors in Stan format.

5.8 checkStructBayInf(model_def, bayinf_def)

Inputs: Dictionary with the model structure and dictionary with the keys
specified in defBayInfStruct() and filled values for each one.
Function: This function checks the contents of the dictionary introduced

14



(structure from defBayInfStruct()). If everything is correct, then some pro-
cessing of the values will be done (mostly indexing and extraction of ele-
ments to ease further indexing of structures). If the value for some key has a
wrong structure or content, the function will break (dictionary not returned)
and a message will be printed to help the user identify where the issue is
(mostly information about the key that had not passed the check).
Outputs: Same dictionary introduced with necessary modifications of some
tields to aid it’s use in further sections. If the value for any key is wrong,
nothing will be returned.

5.9 checkStructBayInfData(model_def, data_def)

Inputs: Dictionary with the model structure and dictionary with the keys
specified in defBayInfDataStruct() and filled values for each one.

Function: This function checks the contents of the dictionary introduced
(structure from defBayInfDataStruct()). If everything is correct, then some
processing of the values will be done (mostly indexing and extraction of
elements to ease further indexing of structures). If the value for some key
has a wrong structure or content, the function will break (dictionary not
returned) and a message will be printed to help the user identify where the
issue is (mostly information about the key that had not passed the check).
Outputs: Same dictionary introduced with necessary modifications of some
tields to aid it’s use in further sections. If the value for any key is wrong,
nothing will be returned.

5.10 checkStructBayInfDataFiles(model_def, data_def)

Inputs: Dictionary with the model structure and dictionary with the keys
specified in defBayInfDataFromFilesStruct() and filled values for each one.
Function: This function checks the contents of the dictionary introduced
(structure from defBayInfDataFromFilesStruct()). If everything is correct,
then some processing of the values will be done (mostly indexing and extrac-
tion of elements to ease further indexing of structures). If the value for some
key has a wrong structure or content, the function will break (dictionary not
returned) and a message will be printed to help the user identify where the
issue is (mostly information about the key that had not passed the check).
Outputs: Same dictionary introduced with necessary modifications of some
tields to aid it’s use in further sections. If the value for any key is wrong,
nothing will be returned.

15



5.11 checkStructBayInfStanSettings(model_def, stan_def)

Inputs: Dictionary with the model structure and dictionary with the keys
specified in defBasicStanSettingsStruct() and filled values for each one.
Function: This function checks the contents of the dictionary introduced
(structure from defBasicStanSettingsStruct()). If everything is correct, then
some processing of the values will be done (mostly indexing and extraction
of elements to ease further indexing of structures). If the value for some
key has a wrong structure or content, the function will break (dictionary not
returned) and a message will be printed to help the user identify where the
issue is (mostly information about the key that had not passed the check).
Outputs: Same dictionary introduced with necessary modifications of some
fields to aid it’s use in further sections. If the value for any key is wrong,
nothing will be returned.

5.12 genStanlnitDict(samps, names, chains)

Inputs: samples for the parameters of your model, names for each parame-
ter and number of chains that the inference will have.

Function: This function generates a dictionary structure for each chain with
a sample for the parameters in the structure Stan requires so it can be given
as initial guess for the inference.

Outputs: Array of dictionaries for the Stan chains initial guesses.

5.13 reparamDictStan(standict, bayinf_def)

Inputs: Stan initial guess array of dictionaries and bayesian inference main
structure.
Function: This function computes a necessary reparametrisation (in Stan

meaning) of the initial guess samples for the chains if reparameterisation of
priors is required.

Outputs: Array of dictionaries for the Stan chains initial guesses with correct
reparameterisation (re-mapping).

5.14 genStanModel(model_def, bayinf_def)

Inputs: model definition and Bayesian inference definition structures with
filled values.

Function: This function takes all the necessary information of your model
and generates a working Stan script to perform inference. Model ODEs

16



and steady state equations (if given) functions are generated, as well as all
the required sections in a Stan script. High flexibility in definition of priors
is allowed (see function infoAll or associated jupyter notebook for more
information).

Outputs: Bayesian inference definition structure with the additional field
ModelPath containing the path to the Stan script generated.

5.15 restructureDatalnference(model_def, bayinf_def)

Inputs: model definition and Bayesian inference definition structures with
filled values.

Function: This function re-structures all the information about the experi-
mental data into a dictionary that Stan will understand as the data structure
for the inference.

Outputs: dictionary containing the data and data structure for the Stan
inference.

5.16 getStanInferenceElements(model_def, bayinf_def)

Inputs: model definition and Bayesian inference definition structures with
filled values.

Function: This function checks the Stan settings selected (if any, defaults
can be used) and processes all the contents for a Stan inference, however
this will not be run, either due to lack of enough elements in the structures
or because the user has selected not to run it.

Outputs: path to the Stan model (modelpath), Stan model generated (Model),
structure containing all the stan settings and hyper-parameters (StanModel),
data structure for the inference (inferdata), initial guesses for the chains if
any (init) and model definition and Bayesian inference definition structures
(model_def, bayinf_def).

5.17 saveStanResults(rc, chns, cnames, model_def, bayinf_def)

Inputs: the 3 function outputs from a Stan inference call (containing in-
ference results) and model definition and Bayesian inference definition
structures with filled values.

Function: This function will allow you to save any Stan results run outside
the package in the same structure (and generating the same plots) than if
you run the inference from the package.

17



Outputs: matrix containing the posterior for parameters.

5.18 runStanInference(model_def, bayinf def)

Inputs: model definition and Bayesian inference definition structures with
filled values.

Function: Similar to getStanInferenceElements() but in this case inference
will be run and results will be saved.

Outputs: stan inference results structure and model definition and bayesian
inference definition structures with the additional fields containing scripts
genretaed paths.

5.19 plotStanResults(staninf res, model_def, bayinf_def)

Inputs: Bayesian inference results, model definition and Bayesian inference
definition structures with filled values.

Function: This function generates and saves (in the results directory) the
plots for the bayesian parameter inference results. A separate plot for each
experiment will be generated, where there will be a subplot for each observ-
able and each inducer of the system. A bi-variate plot for the parameters
will also be generated.

Outputs: None.

5.20 StanInfer(model _def, bayinf_def)

Inputs: model definition and Bayesian inference definition structures with
filled values.

Function: This function is the main core to assess if structures provided by
the user contain enough information to run inference or not and proceed
calling the rest of the section functions.

Outputs: stan inference results structure and model definition and bayesian
inference definition structures with the additional fields containing scripts
genretaed paths.

18



6 Entropy Approximation

6.1 genSamplesPrior(model_def, bayinf def, nsamps, mu,coo)

Inputs: model definition and Bayesian inference definition structures, num-
ber of samples wanted to be generated and mean and covariance if the
sampling comes from a multivariate Normal distribution.

Function: This function reads the prior structure introduced in the bay-
inf_def structure and generates a sampling on the distributions specified
automatically.

Outputs: matrix with the parameter samples generated.

6.2 H_Upper(w,E)

Inputs: weigts and covariances for the Gaussian mixture.

Function: This function computes an upper bound for the entropy approx-
imation performed as a check. For more information, please check M. F.
Huber, T. Bailey, H. Durrant-Whyte and U. D. Hanebeck, "On entropy ap-
proximation for Gaussian mixture random vectors," 2008 IEEE International
Conference on Multisensor Fusion and Integration for Intelligent Systems,
Seoul, 2008, pp. 181-188, doi: 10.1109/MFI.2008.4648062.

This function is not exported with the package.

Outputs: Upper bound for the Entropy approximation.

6.3 mvGauss(x, MU, E)

Inputs: sample, means and covariances for the Gaussian mixture.
Function: probability density function for a multivariate Gaussian. For
more information, please check M. FE. Huber, T. Bailey, H. Durrant-Whyte
and U. D. Hanebeck, "On entropy approximation for Gaussian mixture
random vectors,” 2008 IEEE International Conference on Multisensor Fu-
sion and Integration for Intelligent Systems, Seoul, 2008, pp. 181-188, doi:
10.1109/MFI.2008.4648062.

This function is not exported with the package.

Outputs:

6.4 H_Lower(w, E, MU)

Inputs: weights, covariances and means for a Gaussian mixture.
Function: This function computes a lower bound for the entropy approx-

19



imation performed as a check. For more information, please check M. F.
Huber, T. Bailey, H. Durrant-Whyte and U. D. Hanebeck, "On entropy ap-
proximation for Gaussian mixture random vectors," 2008 IEEE International
Conference on Multisensor Fusion and Integration for Intelligent Systems,
Seoul, 2008, pp. 181-188, doi: 10.1109/MFI.2008.4648062.

This function is not exported with the package.

Outputs: Lower bound for the Entropy approximation.

6.5 GaussMix(x, MU, E, w)

Inputs: sample, means, covariances and weights for a Gaussian mixture.
Function: This function computes the probability density function for a
Gaussian mixture. For more information, please check M. F. Huber, T. Bailey,
H. Durrant-Whyte and U. D. Hanebeck, "On entropy approximation for
Gaussian mixture random vectors," 2008 IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems, Seoul, 2008, pp.
181-188, doi: 10.1109/MFI.2008.4648062.

This function is not exported with the package.

Outputs: probability of the Gaussian mixture for a given sample.

6.6 ZOTSEMU, E, w)

Inputs: means, covariances and weights for a Gaussian mixture.

Function: This function computes the zero-order Taylor series expansion
for a Gaussian mixture. For more information, please check M. F. Huber, T.
Bailey, H. Durrant-Whyte and U. D. Hanebeck, "On entropy approximation
for Gaussian mixture random vectors," 2008 IEEE International Conference
on Multisensor Fusion and Integration for Intelligent Systems, Seoul, 2008,
pp- 181-188, doi: 10.1109/MFI.2008.4648062.

This function is not exported with the package.

Outputs: Zero-order Taylor series expansion value for a Gaussian mixture.

6.7 GaussMix2(x)

Inputs: samples for a Gaussian mixture model.

Function: This function is used to compute the slope of the Gaussian mixture
PDF for a given sample. For more information, please check M. F. Huber, T.
Bailey, H. Durrant-Whyte and U. D. Hanebeck, "On entropy approximation
for Gaussian mixture random vectors," 2008 IEEE International Conference

20



on Multisensor Fusion and Integration for Intelligent Systems, Seoul, 2008,
pp- 181-188, doi: 10.1109/MFI.2008.4648062.

This function is not exported with the package.

Outputs: probability of the Gaussian mixture for a given sample.

6.8 FMix(x, MU, E, w)

Inputs: samples, means covarainces and weights for a Gaussian mixture
model.

Function: This function is used to compute the most computationally expen-
sive part of the second order Taylor series expansion. For more information,
please check M. F. Huber, T. Bailey, H. Durrant-Whyte and U. D. Hanebeck,
"On entropy approximation for Gaussian mixture random vectors," 2008
IEEE International Conference on Multisensor Fusion and Integration for In-
telligent Systems, Seoul, 2008, pp. 181-188, doi: 10.1109/MFI.2008.4648062.
This function is not exported with the package.

Outputs: Most computationally expensive part of the second order Taylor
series expansion

6.9 SOTSEMU, E, w)

Inputs: Means, covariances and weights for a Gaussian mixture model.
Function: This function computes the second-order Taylor series expansion
for a Gaussian mixture. For more information, please check M. F. Huber, T.
Bailey, H. Durrant-Whyte and U. D. Hanebeck, "On entropy approximation
for Gaussian mixture random vectors," 2008 IEEE International Conference
on Multisensor Fusion and Integration for Intelligent Systems, Seoul, 2008,
pp- 181-188, doi: 10.1109/MFI.2008.4648062.

This function is not exported with the package.

Outputs: Second-order Taylor series expansion value for a Gaussian mix-

ture.

6.10 computeH(sampl, model_def, tag)

Inputs: matrix containing the samples for the model parameters, model
definition structure and string used to not over-write past files.

Function: This function computes the entropy approximation for the sam-
ples given using all the above functions. For more information, please check
M. F. Huber, T. Bailey, H. Durrant-Whyte and U. D. Hanebeck, "On entropy

21



approximation for Gaussian mixture random vectors," 2008 IEEE Interna-
tional Conference on Multisensor Fusion and Integration for Intelligent
Systems, Seoul, 2008, pp. 181-188, doi: 10.1109/MFI1.2008.4648062.
Outputs: Entropy approximation results for the given samples.

6.11 computeHgain(prior, posterior, model_def, tag)

Inputs: Prior (as samples or as Stan definition strings as used in the bay-
inf_def structure) and posterior samples, model definition structure and
string used to not over-write past files.

Function: This function automatically computes the entropy approximation
for prior and posterior and also gives the difference between the two (en-
tropy information gain).

Outputs: Dictionary structure containing all the entropy approximations
and information gain computed.

22



7 Optimal Experimental Design for Model Selection

7.1 defODEModelSelectStruct()

Inputs: None

Function: This function allows the user to obtain the dictionary structure
with all the keys for the OED for model selection section so only the values
for each key have to be filled.

Outputs: Dictionary with keys Model_1, Model_2, Obs, Theta_M1, Theta_M2,
y0_M1, y0_M2, preInd_M1, prelnd_M2, finalTime, switchT, tsamps, equal-
Step, fixedInp, fixedStep, plot, flag, uUpper, uLower and maxiter. Values
for each key are empty lists [].

7.2 checkStructOEDMS(oedms_def)

Inputs: Dictionary with OED for model selection dictionary with the keys
specified in defODEModelSelectStruct() and filled values for each one.
Function: This function checks the contents of the dictionary introduced
(structure from defODEModelSelectStruct()). If everything is correct, then
some processing of the values will be done (mostly indexing and extraction
of elements to ease further indexing of structures). If the value for some
key has a wrong structure or content, the function will break (dictionary not
returned) and a message will be printed to help the user identify where the
issue is (mostly information about the key that had not passed the check).
Outputs: Same dictionary introduced with necessary modifications of some
tields to aid it’s use in further sections. If the value for any key is wrong,
nothing will be returned.

7.3 BhattacharyyaDist(mul, mu2, sd1, sd2)

Inputs: mean vector for the first and second distributions and covariance
matrices for the first and second distributions.

Function: This function computes the Bhattacharyya distance between first
and second distribution given (closed at the second moment). Note that
each distribution represents a full simulation for an observable where mean
and covariance have been computed considering all the time points.
Outputs: Bhattacharyya distance value.

23



7.4 EuclideanDist(sm1, sm2)

Inputs: Simulation for model 1 and 2 (only one theta vector considered).
Function: This function computes the Euclidean distance between two dif-
ferent simulations (same observable but different models) across all the
sampling time points.

Outputs: Euclidean distance value.

7.5 genOptimMSFuncts(oedms_def)

Inputs: OED for model selection structure dictionary with all the filled val-
ues for each key.

Function: This function extract all the information about the models and
how the experiment will be designed (sampling times, switching times,
observables, etc.) and generated the Utility /Cost function script for the
optimisation.

Outputs: OED for model selection structure dictionary with some modifi-
cations in some key values to ease script generation (in observables) and
checks (In this case, the check of the models, model scripts generation and
check of the dictionaries is done in here).

7.6 plotOEDMSResults(oedms_res, oedms_def)

Inputs: OED for model selection results and OED for model selection defini-
tion structures with filled values.

Function: This function generates and saves (in the results directory) the
plots for the Bayesian OED for model selection results. A plot for the de-
signed experiment will be generated, where there will be a subplot for each
observable and each inducer of the system. The convergence plot for the
optimisation will also be generated.

Outputs: None.

7.7 settingsBayesOpt(oedms_def)

Inputs: OED for model selection definition structure with filled values.
Function: This function sets the bounds for the different inputs, utility/cost
function to use and all the optimisation settings (defaults) according to the
case running, generating a BOpt structure necessary for the BayesianOpti-
misation.jl package.

24



Outputs: BOpt structure necessary for the BayesianOptimisation.jl package.

7.8 mainOEDMS(oedms_def)

Inputs: OED for model selection definition structure with filled values.
Function: This is the main function of the section, which takes all the speci-
fications from the user, checks that everything is correct and if so, generates
the model and utility /cost function scripts, sets up the Bayesian optimisa-
tion and runs it saving all the results after.

Outputs: OED for model selection results and definition structure with filled
values.The OED for model selection definition structure will also contain
the fields savepath and savename.

25



8 Optimal Experimental Design for Model Calibration

8.1 defODEModelCalibrStruct()

Inputs: None

Function: This function allows the user to obtain the dictionary structure
with all the keys for the OED for model calibration section so only the values
for each key have to be filled.

Outputs: Dictionary with keys Model, Obs, Theta, y0, prelnd, finalTime,
switchT, tsamps, equalStep, fixedInp, fixedStep, plot, flag, uUpper, uLower,
maxiter and util. Values for each key are empty lists [].

8.2 checkStructOEDMC(oedmc_def)

Inputs: Dictionary with OED for model calibration dictionary with the keys
specified in defODEModelCalibrStruct() and filled values for each one.
Function: This function checks the contents of the dictionary introduced
(structure from defODEModelCalibrStruct()). If everything is correct, then
some processing of the values will be done (mostly indexing and extraction
of elements to ease further indexing of structures). If the value for some
key has a wrong structure or content, the function will break (dictionary not
returned) and a message will be printed to help the user identify where the
issue is (mostly information about the key that had not passed the check).
Outputs: Same dictionary introduced with necessary modifications of some
fields to aid it’s use in further sections. If the value for any key is wrong,
nothing will be returned.

8.3 genOptimMCFuncts(oedmc_def)

Inputs: OED for model calibration structure dictionary with all the filled
values for each key.

Function: This function extracts all the information about the model and
how the experiment will be designed (sampling times, switching times, ob-
servables, etc.) and generated the Utility function script for the optimisation.

8.4 plotOEDMCResults(oedmc_res, oedmc_def)

Inputs: OED for model calibration results and OED for model calibration
definition structures with filled values.
Function: This function generates and saves (in the results directory) the

26



plots for the Bayesian OED for model calibration results. A plot for the
designed experiment will be generated, where there will be a subplot for
each observable and each inducer of the system. The convergence plot for
the optimisation will also be generated.

Outputs: None.

8.5 settingsBayesOptMC(oedmc_def)

Inputs: OED for model calibration definition structure with filled values.
Function: This function sets the bounds for the different inputs, utility func-
tion to use and all the optimisation settings (defaults) according to the case
running, generating a BOpt structure necessary for the BayesianOptimisa-
tion.jl package.

Outputs: BOpt structure necessary for the BayesianOptimisation.jl package.

8.6 mainOEDMC(oedmc_def)

Inputs: OED for model calibration definition structure with filled values.
Function: This is the main function of the section, which takes all the speci-
fications from the user, checks that everything is correct and if so, generates
the model and utility function scripts, sets up the Bayesian optimisation and
runs it saving all the results after.

Outputs: OED for model calibration results and definition structure with
tilled values.The OED for model calibration definition structure will also
contain the fields savepath and savename.

27



9 Others

9.1 printLogo()

Inputs: None
Function:
Outputs: None

9.2 versionBOMBS()

Inputs: None
Function:
Outputs: None

9.3 infoAll(woo)

Inputs:
Function:
Outputs: None
Prints:

Please, if you want information about one of the package structures,

type:
1) "model" for the model generation section

"non

2) "simulation”, "simulation" or "simul" for the model simulation section

"non "non

3) "pseudo-data"”, "pseudodata”, "pseudo data" for the model pseudo-data
generation section

4) "mle", "likelihood" for the maximum likelihood estimation section 5) "in-
ference", "stan", "
inference section
6) "oedms", "model selection", "modelselection”, "oed model selection" for
the optimal experimental design for model selection section

7) "oedmc", "model calibration", "modelcalibration", "oed model calibration"
for the optimal experimental design for model calibration section

"non

stan inference", "staninference" for the Bayesian parameter

"model" —>
CALL defModStruct()
model_def["NameF"] = [];
String containing the name of the model. Scripts and results will be stored

28



using this name

model_def["nStat"] = [];
Integer indicating the total number of steps of the model.

model_def['nPar"] = [];
Integer indicating the total number of parameters of the model.

model_def["nInp"] = [];
Integer indicating the total number of stimuli (inducers) of the model. If the
model has no inputs, set it to 0.

model_def["stName"] = [];
Vector of strings indicating the name of all the states of the model (without
a d letter in front).

model_def["parName"] = [];
Vector of strings indicating the name of all the parameters of the model.

model_def["inpName"] = [];
Vector of strings indicating the name of all the stimuli (inducers) of the
model. If the model has no inputs just give an empty vector.

model_def["eqns"] = [];
Vector of strings containing all the equations for the model (left and right-
hand sides).
If an equation represents a state, the left-hand side has to be one of the
strings contained in stName but with a d in front (example: Prot -> dProt =
)
Equations that are not states of ODEs are also allowed. Same as Julia expres-
sions (println, for, if, etc.)
If you want to include a condition (if) for a state variable, each one of the if
statement has to be written in a separate string. Be careful with this, since
then your Stan model will not work. To make it work you have to write it in
Stan language, but then the Julia code will not work. We recommend that if
so, first generate the stan code and then apply all the necessary modifica-
tions there. However, if you do not care for the Julia code and just want the
Stan code go on. Just know that in this case, if there is a condition in one of
the states, in stan you need to type the full if statement in one same string.
Note that models without external inputs are also supported except for the
optimal experimental design sections.

29



model_def["YOeqs"] = [];
Vector of strings containing the steady-state equations of the model if de-
sired (if not, just leave it as an empty vector). These equations will be used
to compute y0 assuming steady-state reached before the experiment.
All the states must appear (identified in the left-hand side, but this time
without the d in front), however other equations are allowed.
If some element of the equation requires an experimental value for the cal-
culation, please add exp at the beginning of the state (example: Cmrna ->
expCmrna).
Please, do not use the name alp for anything, since this is reserved.

model_def["Y0OSIim"] = [];
If analytical solution of the model at steady state is not accurate enough and
you want to add an Over-Night simulation before the actual experiment
simulation.
Allowed vales are true, false, "Yes", "yes", "No", "no".
Default value is false.
Time-scale for the simulation is assumed in minutes (1440 min). If this wants
to be changed, what should be introduced here is a number for the time
conversion (e.g. 1/60 if to convert to days or 60 if to convert to seconds)

model_def["tols"] = [];
Vector of 2 floats containing the relative and absolute tolerances for the
solver (in this order). If left empty, 1e-6 will be assumed for both.

model_def["solver"] = [];
IVP solver to solve the ODEs. If nothing specified, the default will be

Tsit5(). For more info check https://diffeq.sciml.ai/v2.0/tutorials/
ode_example.html

"simul" —>

CALL defSimulStruct()
MAIN STRUCTURE

simul_def["Nexp"] = [];
Integer indicating the number of experiments to be simulated

simul_def["finalTime"] = [];

30


https://diffeq.sciml.ai/v2.0/tutorials/ode_example.html
https://diffeq.sciml.ai/v2.0/tutorials/ode_example.html

Vector of final times for each simulation (initial time will always be assumed
as 0, so please consider that).

simul_def["switchT"] = [];
Array with the switching times of the inducer in the simulation (time 0 and
final time need to be considered)

simul_def["y0"] = [];
Array (single simulation) or matrix (multiple simulations) of YOs for the
simulations for each experiment. If you are computing the steady-state this
vector might not be used, however, you still need to introduce it with some
random numbers.

simul_def["prelnd"] = [];
Vector of numbers with the values for the stimuli (inducer) in the over-night.
It might be the case that this entry is not required since only the y0 vector is
considered for the initial point of the simulation. However, you still need to
introduce a random value for it to avoid future issues.

simul_def["ulnd"] = [];
Array containing the values for the stimuli at each step for each experiment.
In each sub-array, columns indicate a step and rows indicate an inducer (if
multiple ones are considered).

simul_def["theta"] = [];
Vector /Matrix with the parameter samples or directory and file location of
CSV file with them.

simul_def["tsamps™'] = [];
Array of sampling time vectors for the experiments.

simul_def["plot"] = [];
Boolean or yes/no string to save the resulting simulations in the results
directory (false will be considered as default).

simul_def["flag"] = [];
String to attach a unique flag to the generated scripts and result files so they

are not overwritten. If empty, nothing will be added.

CALL defSimulStructFiles()

31



STRUCTURE IF CSV FILES ARE USED

simul_def["ObservablesFile"] = [];
Vector of strings containing the name of the files that have the information
about the sampling times and y0 values.

simul_def["EventInputsFile"] = [];
Vector of strings containing the name of all the files that have the informa-
tion about the stimuli and events of the experiment.

simul_def["theta"] = [];
Vector /Matrix with the parameter samples or directory and file location of
CSV file with them.

simul_def["MainDir"] = [];
Main directory path for the files in ObervablesFile and EventInputsFile.

simul_def["plot"] = [];
Boolean or yes/no string to save the resulting simulations in the results
directory (false will be considered as default).

simul_def["flag"] = [];

String to attach a unique flag to the generated scripts and result files so they
are not overwritten. If empty, nothing will be added.

"pseudodata" —>
CALL defPseudoDatStruct()

MAIN STRUCTURE

pseudo_def["Nexp"] = [];
Integer indicating the number of experiments to be simulated

pseudo_def["finalTime"] = [];
Vector of final times for each simulation (initial time will always be assumed

as 0, so please consider that).

pseudo_def["switchT"] = [];
Array with the switching times of the inducer in the simulation (time 0 and

32



final time need to be considered)

pseudo_def["y0"] = [];
Array (single simulation) or matrix (multiple simulations) of Y0s for the
simulations for each experiment. If you are computing the steady-state this
vector might not be used, however, you still need to introduce it with some
random numbers.

pseudo_def["prelnd"] = [];
Vector of numbers with the values for the stimuli (inducer) in the over-night.
It might be the case that this entry is not required since only the y0 vector is
considered for the initial point of the simulation. However, you still need to
introduce a random value for it to avoid future issues.

pseudo_def["ulnd"] = [];
Array containing the values for the stimuli at each step for each experiment.
In each sub-array, columns indicate a step and rows indicate an inducer (if
multiple ones are considered).

pseudo_def["theta"] = [];
Vector /Matrix with the parameter samples or directory and file location of
CSV file with them.

pseudo_def["tsamps"] = [];
Array of sampling time vectors for the experiments.

pseudo_def["plot"] = [];
Boolean or yes/no string to save the resulting simulations in the results
directory (false will be considered as default).

pseudo_def["flag"] = [];
String to attach a unique flag to the generated scripts and result files so they
are not overwritten. If empty, nothing will be added.

pseudo_def["Obs"] = [];
States of the model that are observables. This is either a vector of strings, a
vector of integers indicating which entries from model_def["'stName"] are
observables. If a vector of strings is given, these could also be an expression
combining states (Only +,-,%,/ and Will be considered).

pseudo_def["NoiseType"] = [];

33



String indicating if the desired noise is homoscedastic or heteroscedastic.
The allowed strings are homo, homoscedastic or hetero, heteroscedastic
(case independent). If empty, default will be heteroscedastic.

pseudo_def["Noise"] = [];
Percentage of heteroscedastic noise (introduced as value from 0 to 1). If
empty 10% heteroscedastic noise will be assumed. In the homoscedastic
case, if empty a standard deviation of 1 will be assumes. This has to be a
vector of noise values for each observable.

CALL defPseudoDatStructFiles()
STRUCTURE IF CSV FILES ARE USED

pseudo_def["ObservablesFile"] = [];
Vector of strings containing the name of the files that have the information
about the sampling times and yO0 values.

pseudo_def["EventInputsFile"] = [];
Vector of strings containing the name of all the files that have the informa-
tion about the stimuli and events of the experiment.

pseudo_def["theta"] = [];
Vector /Matrix with the parameter samples or directory and file location of
CSV file with them.

pseudo_def["MainDir"] = [];
Main directory path for the files in ObervablesFile and EventInputsFile.

pseudo_def["plot"] = [];
Boolean or yes/no string to save the resulting simulations in the results
directory (false will be considered as default).

pseudo_def["flag"] = [];
String to attach a unique flag to the generated scripts and result files so they
are not overwritten. If empty, nothing will be added.

pseudo_def["Obs"] = [];
States of the model that are observables. This is either a vector of strings, a
vector of integers indicating which entries from model_def["stName"] are
observables. If a vector of strings is given, these could also be an expression

34



combining states (Only +,-,%,/ and Will be considered).

pseudo_def["NoiseType"] = [];
String indicating if the desired noise is homoscedastic or heteroscedastic.
The allowed strings are homo, homoscedastic or hetero, heteroscedastic
(case independent). If empty, default will be heteroscedastic.

pseudo_def["Noise"] = [];
Percentage of heteroscedastic noise (introduced as value from 0 to 1). If
empty 10% heteroscedastic noise will be assumed. In the homoscedastic
case, if empty a standard deviation of 1 will be assumes. This has to be a
vector of noise values for each observable.

"mle" —>
CALL defMLEStruct()

mle_def["Nexp"] = [];
Integer indicating the number of experiments to be simulated

mle_def["finalTime"] = [];
Vector of final times for each simulation (initial time will always be assumed
as 0, so please consider that).

mle_def["switchT"] = [];
Array with the switching times of the inducer in the simulation (time 0 and
final time need to be considered)

mle_def["y0"] = [];
Array (single simulation) of YOs for the simulations for the experiment. If
you are computing the steady-state this vector might not be used, however,
you still need to introduce it with some random numbers.

mle_def["prelnd"] = [];
Vector of numbers with the values for the stimuli (inducer) in the over-night.
It might be the case that this entry is not required since only the y0 vector is
considered for the initial point of the simulation. However, you still need to
introduce a random value for it to avoid future issues.

35



mle_def["ulnd"] = [];
Array containing the values for the stimuli at each step for each experiment.
In each sub-array, columns indicate a step and rows indicate an inducer (if
multiple ones are considered).

mle_def["tsamps"] = [];
Array of sampling time vectors for the experiments.

mle_def["plot"] = [];
Boolean or yes/no string to save the resulting simulations in the results
directory (false will be considered as default).

mle_def["flag"] = [];
String to attach a unique flag to the generated scripts and result files so they
are not overwritten. If empty, nothing will be added.

mle_def["thetaMAX"] = [];
Vector containing the maximum bounds for theta (no files can be introduced)

mle_def["thetaMIN"] = [];
Vector containing the minimum bounds for theta (no files can be introduced)

mle_def["runs"] = [];
Integer indicating how many runs of Optimisation will be done. You will
get as many theta vectors as runs selected.

mle_def["parallel"] = [];
Boolean or yes/no string indicating if the different runs want to be done in
parallel (true) or series (false). Default is false.

For the two following fields, you can introduce a string pointing to the
observable files (same strings in) both fields having the same structure as the
ones generated in the PseudoData section. If multiple theta are considered
in the file, then the covariance matrix will be taken.
mle_def["'DataMean"] = [];

Array containing the vector of means for each experiment.

mle_def["DataError"] = [];
Array containing the vector or matrices (covariance included) of errors for
the data for each experiment.

36



IMPORTANT!!

Whilst each entry (experiment) of DataMean can be a matrix where each col-
umn is an observable of the system, for DataError this is not the case. Each
entry of the array (experiment) will have as many entries as observables,
where it would be a vector of errors or a matrix. This is done this way to
generalise the presence of both options.

mle_def['Obs"] = [];
States of the model that are observables. This is either a vector of strings, a
vector of integers indicating which entries from model_def["'stName"] are
observables. If a vector of strings is given, these could also be an expression
combining states (Only +,-,*,/ and Will be considered).

mle_def["OPTsolver"] = [];
For now we only use the package BlackBoxOptim, so any of their options
can be used. The default is adaptive_de_rand_1_bin_radiuslimited. Please,
introduce it as a string.

mle_def["MaxTime"] = [];
Integer indicating the maximum number of time allowed for the optimisa-
tion as a stop criterion. If this is selected MaxFuncEvals has to be empty
(only 1 stop criterion). If both are empty, the default will be to do 1000
function evaluations

mle_def["'MaxFuncEvals"] = [];
Integer indicating the maximum number of function evaluations allowed
for the optimisation as a stop criterion. If this is selected MaxTime has to be
empty (only 1 stop criterion). If both are empty, the default will be to do 1

"inference" —>
CALL defBayInfStruct()
MAIN STRUCTURE
bayinf_def["Priors"] = []; Five options for this:
1) A 2*N array containing the bounds for the parameters. Order of parame-

ters will be assumed as the one introduced in model_def["parName"]. As
a prior a truncated Normal covering 2 standard deviations in the bounds

37



given will be generated as prior.

2) Path to a CSV file containing samples for the parameters. Fitting of
the samples to different type of distributions will be done to generate the
priors. Order of parameters will be assumed as the one introduced in
model_def["parName"]. You can also introduce a 2D array of floats with the
samples (ArrayFloat64,2).

3) Dictionary with fields pars, transpars and pridis defining the parameters,
subsequent desired transformations and prior distributions. In the field
pars, parameters have to be defined with the same names and order as in
model_def["parName"], otherwise the script will not proceed.

4) An empty array. If this is the case, the stan model will be generated with
nothing in the parameters and transformed parameters section. The path to
the stan file will be given so the user can fill these sections.

5) Path to a Stan model file if you already have one. For example, if first you
introduce an empty array, then you can fill the parameters section and run
from that script instead of having to copy the things in here.

bayinf_def["Data"] = []; Two options:

1) A dictionary containing 3 fields. Observables, for the path to the files
containing the experimental data. Inputs, for the path to the files containing
the input profiles for the experiments. Obs, a string vector containing the
observables of the experiments. The format of the files has to be the same
one as the ones generated in the pseudo-data section. For each of the 2
entries, more than one file can be given if a multi-experimental inference
wants to be done. Obs file also needs to be given. A y0 in a field with the
same name has to be given for each experiment. The field is compulsory,
even if not used.

WARNING: For now, this option does not include extraction of covariance
matrix for data.

2) A dictionary containing the same structure as the simul_def plus the
tields DataMean and DataError containing the experimental data. You can
call the function defBayInfDataStruct() to obtain the empty structure of the
dictionary.

bayinf_def["StanSettings"] = []; Two options:
1) A dictionary with the basic fields from a stan run. The structure of the
dictionary can be extracted calling the function defBasicStanSettingsStruct().
2) An empty array. If this is the case, no inference will be done after calling
the main function. Instead, you will be given a StanModel file and data
structure and you will have to use this to run a call of Stan by yourself. An
example will be provided.

38



bayinf_def["flag"] = [];
String to attach a unique flag to the generated files so it is not overwritten.
If empty, nothing will be added.

bayinf_def["plot"] = [J;

true, flase, "Yes", "yes", "No", "no" or [] indicating if plots with the results
will be generated. Default is false.

bayinf_def["runInf"] = [];
true, flase, "Yes", "yes", "No", "no" or [] indicating if inference wants to be
performed or only stan structure is given. Default is true (if all the necessary

elements are present)

bayinf_def["MultiNormFit"] = [];
true, false, "yes", "no", "Yes", "No" or [] indicating that if samples are given to
fit, the prior will be fitted as a MultiNormal distribution or not. the default
is false. If some parameter is better fit with a Log-Normal distribution, this
will be used with a distribution reparameterisation to begin to be included
in the multinormal. If for some parameter a Uniform distribution is better,
this parameter will be excluded from the multinormal and defined as a
separate parameter. This can be used as an example of how to set your Stan

Model to use multi_normal priors.
CALL defBayInfDataStruct()
DATA DICTIONARY STRUCTURE

data_def["Nexp"] = [];
Integer indicating the number of experiments to be simulated

data_def["finalTime"] = [];
Vector of final times for each simulation (initial time will always be assumed
as 0, so please consider that).

data_def["switchT"] = [];
Array with the switching times of the inducer in the simulation (time 0 and
final time need to be considered)

data_def["y0"] = [];
Array (single simulation) or matrix (multiple simulations) of YOs for the

39



simulations for each experiment. If you are computing the steady-state this
vector might not be used, however, you still need to introduce it with some
random numbers.

data_def["preInd"] = [];
Vector of numbers with the values for the stimuli (inducer) in the over-night.
It might be the case that this entry is not required since only the y0 vector is
considered for the initial point of the simulation. However, you still need to
introduce a random value for it to avoid future issues.

data_def["ulnd"] = [];
Array containing the values for the stimuli at each step for each experiment.
In each sub-array, columns indicate a step and rows indicate an inducer (if
multiple ones are considered).

data_def["tsamps"] = [];
Array of sampling time vectors for the experiments.

data_def["DataMean"] = [];
Array containing the vector of means for each experiment.

data_def["DataError"] = [];
Array containing the vector or matrices (covariance included) of errors for
the data for each experiment.

IMPORTANT!!!!

Whilst each entry (experiment) of DataMean can be a matrix where each
column is an observable of the system, for DataError this is not the case.
Each entry of the array (experiment) will have as many entries as observ-
ables, where it would be a vector of errors or a matrix. This is done this way
to generalise the presence of both options.

data_def["Obs"] = [];
States of the model that are observables. This is either a vector of strings, a
vector of integers indicating which entries from model_def["stName"] are
observables. If a vector of strings is given, these could also be an expression
combining states (Only +,-,%,/ and Will be considered).

40



CALL defBayInfDataFromFilesStruct()
DATA DICTIONARY STRUCTURE IF FILES ARE GIVEN

data_def["Observables"] = [];
Vector of strings containing the name of the files that have the information
about the sampling times and y0 values.

data_def["Inputs"] = [];
Vector of strings containing the name of all the files that have the informa-
tion about the stimuli and events of the experiment.

data_def["'Obs"] = [];
States of the model that are observables. This is either a vector of strings, a
vector of integers indicating which entries from model_def["stName"] are
observables. If a vector of strings is given, these could also be an expression
combining states (Only +,-,%,/ and Will be considered).

data_def["y0"] = [];
Array (single simulation) or matrix (multiple simulations) of YOs for the
simulations for each experiment. If you are computing the steady-state this
vector might not be used, however, you still need to introduce it with some
random numbers.

CALL defBasicStanSettingsStruct()

STAN SETTINGS DICTIONARY STRUCTURE

stan_def["cmdstan_home"] = [];
String containing the full path to the installation directory for cmdstan

stan_def["'nchains"] = [];
Number of chains for the inference (integer)

stan_def["nsamples"] = [];
Number of post-warmup samples for each chain (integer)

stan_def["'nwarmup"] = [];
Number of warm-up samples for each chain (integer)

stan_def["printsummary"] = [];

41



Print sumary of inference at the end. This can be either true or false. Default
will be true.

stan_def["init"] = [];
Initial point for the parameters in each chain. See output of MLE results.
This field can be empty. Please introduce the parameter values in their true
parameter range.

stan_def["'maxdepth"] = [];
Maximum tree-depth. This field can be empty. Check Stan documentation
for more information.

stan_def["adaptdelta"] = [];
Delta value between 0 and 1. This field can be empty. Check Stan documen-
tation for more information.

stan_def["jitter"] = [J;
Jitter value between 0 and 1. This field can be empty. Check Stan documen-
tation for more information.

"oedms" —>
CALL defODEModelSelectStruct()

oedms_def["Model_1"] = [];
Model structure for Model 1. Dict. See Model Generation Section.
Note that the order of the inputs is the one defined in this model. If there is
a chance that Model_2 has an input that does not exist in this model, these
will be appended at the end of the ones in Model_1.

oedms_def["Model_2"] =];
Model structure for Model 2. Dict. See Model Generation Section.

oedms_def["Obs"] = [];

States of the model that are observables. This is a vector of strings.These
could also be an expression combining states (Only +,-,%,/ and Will be con-
sidered).

Note that due to the use of the covariance matrix in some computations an
addition of a small number (0.1) is done in the diagonal elements (for now)
to ensure this to be positive definite. If the observable(s) of your model are
normalised or in a range between 0 and 1 we recommend to re-scale this

42



to a larger range (0 to 100 for example) so the variances considered are as
close as possible to the real ones. This can be done by just multiplying the
observable by a constant (Obs*100 for example) in each entry of the vector.

oedms_def["Theta_M1"] = [];
Theta vector (frequentist OED or model with 1 parameter) or matrix (Bayesian
OED) for model 1. Path to file with samples is also allowed.

oedms_def["Theta_M2"] = [];
Theta vector (frequentist OED or model with 2 parameter) or matrix (Bayesian
OED) for model 2. Path to file with samples is also allowed.

oedms_def["y0_M1"] = [];
For Model 1:
Array (single simulation) or matrix (multiple simulations) of Y0s for the
simulations for each experiment. If you are computing the steady-state this
vector might not be used, however, you still need to introduce it with some
random numbers.

oedms_def["y0_M2"] = [];
For Model 2:
Array (single simulation) or matrix (multiple simulations) of Y0s for the
simulations for each experiment. If you are computing the steady-state this
vector might not be used, however, you still need to introduce it with some
random numbers.

oedms_def["preInd_M1"] = [];
For Model 1:
Vector of numbers with the values for the stimuli (inducer) in the over-night.
It might be the case that this entry is not required since only the y0 vector is
considered for the initial point of the simulation. However, you still need to
introduce a random value for it to avoid future issues.

oedms_def["preInd_M2"] = [];
For Model 2:
Vector of numbers with the values for the stimuli (inducer) in the over-night.
It might be the case that this entry is not required since only the y0 vector is
considered for the initial point of the simulation. However, you still need to
introduce a random value for it to avoid future issues.

oedms_def["finalTime"] = [];

43



Vector of final times for each simulation (initial time will always be assumed
as 0, so please consider that).

oedms_def["switchT"] = [];
Array with the switching times of the inducer in the simulation (time 0 and
final time need to be considered)

oedms_def["tsamps"] = [];
Array of sampling time vectors for the experiments.

oedms_def["fixedInp"] = [];
If more than 1 inducer for the system exists, but only 1 input can be dynamic,
give a vector of strings indicating which inputs are going to be optimised
but as a constant input instead of dynamic. If none, just give an empty
vector.
If there is only 1 stimuli in the model, this field will be ignored.

oedms_def["fixedStep"] = [];

If you want any of the steps to be fixed to a value. This has to be an empty
array if none is fixed or an array of tuples, where each tuple is a step to be
fixed. The first entry of the tuple is the index of the step (as an Integer), and
the second and array of values for each inducer. Note that the fixed inputs
will be ignored, so do not take them into account here.

The example type should be ArrayArrayInt,1,1 or an empty array ([]) if not
used.

oedms_def["equalStep"] = [];
If you want a series of steps to have the same optimised value (for example
if you want to design a pulse experiment) you can introduce inside this
array different arrays with the indexes of the steps that will have the same
value. The values introduced in each array need to be integers.

oedms_def["plot"] = [];

true, flase, "Yes", "yes", "No", "no" or [] indicating if plots with the results
will be generated. Default is false.

oedms_def["flag"] = [];
String to attach a unique flag to the generated files so it is not overwritten.
If empty, nothing will be added.
The order of uUpper and uLower will be taken as the order of inducers
defined in Model 1. If Model 2 has an aditional input, this will be added

44



after, so consider this when introducing the bounds for them.

oedms_def["uUpper"] = [];
Vector indicating the upper bounds for the inducers

oedms_def["uLower"] = [];
Vector indicating the lower bounds for the inducers

oedms_def["maxiter"] = [];
Maximum number of iterations for the Bayesian Optimisation. If nothing is
introduced a default of 100 iterations will be taken

"oedmc" —>
CALL defODEModelCalibrStruct()

oedmc_def['Model"] = [];
Dict with Model. See Model Generation Section.

oedmc_def["'Obs"] = [];
States of the model that are observables. This is a vector of strings.These
could also be an expression combining states (Only +,-,%,/ and Will be con-
sidered).

oedmc_def["Theta"] = [];
Theta matrix (Bayesian OED) for the model. No single vectors will be al-
lowed. Path to file is also allowed.

oedmc_def["y0"] = [];
Array (single simulation) or matrix (multiple simulations) of YOs for the
simulations for each experiment. If you are computing the steady-state this
vector might not be used, however, you still need to introduce it with some
random numbers.

oedmc_def["prelnd"] = [];
Vector of numbers with the values for the stimuli (inducer) in the over-night.
It might be the case that this entry is not required since only the y0 vector is
considered for the initial point of the simulation. However, you still need to
introduce a random value for it to avoid future issues.

oedmc_def["finalTime"] = [];

45



Vector of final times for each simulation (initial time will always be assumed
as 0, so please consider that).

oedmc_def["switchT"] = [];
Array with the switching times of the inducer in the simulation (time 0 and
final time need to be considered)

oedmc_def["tsamps"] = [];
Array of sampling time vectors for the experiments.

oedmc_def["fixedInp"] = [];
If more than 1 inducer for the system exists, but only 1 input can be dynamic,
give a vector of strings indicating which inputs are going to be optimised
but as a constant input instead of dynamic. If none, just give an empty
vector.
If there is only 1 stimuli in the model, this field will be ignored.

oedmc_def["fixedStep"] = [];
If you want any of the steps to be fixed to a value. This has to be an empty
array if none is fixed or an array of tuples, where each tuple is a step to be
fixed. The first entry of the tuple is the index of the step (as an Integer), and
the second and array of values for each inducer. Note that the fixed inputs
will be ignored, so do not take them into account here.

oedmc_def["equalStep"] = [];
If you want a series of steps to have the same optimised value (for example
if you want to design a pulse experiment) you can introduce inside this
array different arrays with the indexes of the steps that will have the same
value. The values introduced in each array need to be integers.

oedmc_def["plot"] = [];

true, flase, "Yes", "yes", "No", "no" or [] indicating if plots with the results
will be generated. Default is false.

oedmc_def["flag"] = [];
String to attach a unique flag to the generated files so it is not overwritten.
If empty, nothing will be added.

oedmc_def["uUpper"] = [];
Vector indicating the upper bounds for the inducers

46



n

oedmc_def["uLower"] = [];
Vector indicating the lower bounds for the inducers

oedmc_def["'maxiter"] = [];
Maximum number of iterations for the Bayesian Optimisation. If nothing is
introduced a default of 100 iterations will be taken

oedmc_def["util"] = [];
String indicating entropy or perc (or percentile) as the core of the utility
function to compute the uncertainty of the model simulations. The default
will be to use percentiles.

47



	Model Generation
	defModStruct()
	checkStruct(model_def)
	GenerateModel(model_def)

	Model Simulation
	defSimulStruct()
	checkStructSimul(model_def, simul_def)
	fileStructInfo()
	defSimulStructFiles()
	extractSimulCSV(model_def, simul_def)
	plotSimsODE(simuls,model_def,simul_def)
	simulateODEs(model_def, simul_def)

	Pseudo-Data Generation
	defPseudoDatStruct()
	checkStructPseudoDat(model_def, pseudo_def)
	defPseudoDatStructFiles()
	extractPseudoDatCSV(model_def, pseudo_def)
	PDatCSVGen(pseudo_res,model_def,pseudo_def)
	plotPseudoDatODE(pseudo_res,model_def,pseudo_def)
	GenPseudoDat(model_def, pseudo_def)

	Maximum Likelihood Estimation
	defMLEStruct()
	SimToMle(mle_def, simul_def)
	checkStructMLE(model_def, mle_def)
	selectObsSim_te(simul, Obs, stName)
	restructInputs_te(model_def, mle_def, expp)
	UVloglike(dats, mes, errs)
	MVloglike(dats, mes, errs)
	plotMLEResults(mle_res,model_def,mle_def)
	defCrossValMLEStruct()
	checkStructCrossValMLE(model_def, cvmle_def)
	plotCrossValMLEResults(cvmle_res,model_def,cvmle_def, simul_def)
	CrossValMLE(model_def, cvmle_def)
	finishMLEres(mle_res, model_def, mle_def)
	MLEtheta(model_def, mle_def)

	Stan Inference of Parameters
	defBayInfStruct()
	defBayInfDataStruct()
	defBayInfDataFromFilesStruct()
	defBasicStanSettingsStruct()
	convertBoundTo2(x, bo, up)
	fitPriorSamps(priorsamps, model_def)
	fitPriorSampsMultiNorm(priorsamps, model_def)
	checkStructBayInf(model_def, bayinf_def)
	checkStructBayInfData(model_def, data_def)
	checkStructBayInfDataFiles(model_def, data_def)
	checkStructBayInfStanSettings(model_def, stan_def)
	genStanInitDict(samps, names, chains)
	reparamDictStan(standict, bayinf_def)
	genStanModel(model_def, bayinf_def)
	restructureDataInference(model_def, bayinf_def)
	getStanInferenceElements(model_def, bayinf_def)
	saveStanResults(rc, chns, cnames, model_def, bayinf_def)
	runStanInference(model_def, bayinf_def)
	plotStanResults(staninf_res, model_def, bayinf_def)
	StanInfer(model_def, bayinf_def)

	Entropy Approximation
	genSamplesPrior(model_def, bayinf_def, nsamps, mu,coo)
	H_Upper(w,E)
	mvGauss(x, MU, E)
	H_Lower(w, E, MU)
	GaussMix(x, MU, E, w)
	ZOTSE(MU, E, w)
	GaussMix2(x)
	FMix(x, MU, E, w)
	SOTSE(MU, E, w)
	computeH(sampl, model_def, tag)
	computeHgain(prior, posterior, model_def, tag)

	Optimal Experimental Design for Model Selection
	defODEModelSelectStruct()
	checkStructOEDMS(oedms_def)
	BhattacharyyaDist(mu1, mu2, sd1, sd2)
	EuclideanDist(sm1, sm2)
	genOptimMSFuncts(oedms_def)
	plotOEDMSResults(oedms_res, oedms_def)
	settingsBayesOpt(oedms_def)
	mainOEDMS(oedms_def)

	Optimal Experimental Design for Model Calibration
	defODEModelCalibrStruct()
	checkStructOEDMC(oedmc_def)
	genOptimMCFuncts(oedmc_def)
	plotOEDMCResults(oedmc_res, oedmc_def)
	settingsBayesOptMC(oedmc_def)
	mainOEDMC(oedmc_def)

	Others
	printLogo()
	versionBOMBS()
	infoAll(woo)


