
Cheops v1.3

Manual for Users and Programmers

Tristan Miller
psychonaut@nothingisreal.com

https://logological.org/cheops

27 December 2016

1 Introduction

This document describes Cheops (Chess opponent simulator), an object-oriented
chess-playing program.

2 Running Cheops

Once invoked, Cheops displays a title screen and prompts the user for who
controls each player. If a computer opponent is chosen, a list of default static
evaluation function weights is displayed. To accept the default values, type
done; otherwise, enter the number of the weight to change. The program will
then prompt for the new value. The program will allow the user to adjust the
weights until done is entered.

Following player setup, the board is displayed and the game begins. The
board is represented by a simple text diagram using the standard one-character
piece abbreviations; white pieces are represented by small letters and black
pieces by capitals. Each player makes his move in turn; human players are
prompted for their move, and computer players move automatically. To make
a move, enter the source and destination coordinates in standard algebraic
notation—for example, g1f3 moves the knight at g1 to f3. For pawn pro-
motions, the promotion piece must be appended—for instance, e7e8n promotes
to a knight. For castling, the user may either enter the source and destination
coordinates of the king, or he may simply type o-o or o-o-o for kingside or
queenside castling, respectively. The players may continue entering moves in
this manner until a checkmate or draw state is reached. As in regular chess, a
draw occurs upon stalemate, triple observance of the same board configuration
with the same side to move, or observance of fifty moves without a capture or
pawn advance.

In addition to legal moves, the following commands are also available as
responses for human players. At the end of a game, no further moves are
possible, and one of these commands must be entered.

resign forfeit the match

bd redisplay the board

1

coords toggle display of board coordinates

reverse reverse board display (black on top to white on top, or vice versa)

think toggle display of computer “thinking”

log display log of moves for the current game

save save the move log to a file

new start a new game (board in initial configuration with white to move)

who set players and computer stats, if applicable

quit exit the program

3 Implementation

3.1 Program structure

Cheops is comprised of four classes and a main program which provides an
interface and ties everything together. The ChessBoard class is at the heart of
the program; it is a fully encapsulated data structure allowing for the manipu-
lation of chessboards and the pieces thereon. The board itself is represented by
a privately-declared 64-element array, each cell containing an enum value rep-
resenting the type and colour of the piece. There are also numerous flags and
counters, the purposes of which should be obvious from the source code and
its internal documentation. The class has just two major public functions—
can move(), which returns a boolean value indicating whether or not a given
move is valid; and do move(), which actually performs a move, rearranging the
pieces on the board and updating the appropriate status flags. In addition to
these, there are a score of small inline functions for performing menial status
checks and type conversions. These functions add an extra layer of abstraction
within the class, permitting the implementation of the board and pieces to be
changed without having to modify the other functions in the class or its friends.
Even the board arithmetic is self-contained to a degree—individual squares are
represented not by integers 0 to 63 but by enum constants a1 to h8, and incre-
menting ranks and files is done using constants Rank and File. This data hiding
would make it easy to change the board array to, say, the popular 10× 12 or
0x88 formats [1].

The remaining three classes define the players. At the top of the hierarchy is
Player, an abstract base class serving as a template for its two derived classes,
HumanPlayer and ComputerPlayer. The Player class itself is very small and
contains no executable functions. It has just three main members: one boolean
flag indicating whether the player is human, and two pure virtual functions, the
first of which is used to get commands from the player, and the second to modify
his stats. In HumanPlayer, the first function prints out the command prompt
and relays the input back to the main program, while in ComputerPlayer it
runs the minimax search algorithm to come up with the optimal move. The
second function, while vestigial in HumanPlayer, is used in the other class to set
the weights for the static evaluation function.

2

The ComputerPlayer class is one of the largest in Cheops, and thus de-
serves particular notice here. Because it needs to examine in detail the state
of the chessboard, ComputerPlayer is a friend class of ChessBoard. It includes
functions for determining potential moves, finding the distance between two
board squares, assessing board configurations, and, of course, choosing the op-
timal move using a minimax search of the game tree. The actual criteria used
to evaluate a particular board position are many and varied, and are treated
specifically in the following section.

3.2 Static evaluation function

The heuristics for the positional evaluator of Cheops are based on those of
GNU Chess [4] and Cray Blitz [3]. Many of the criteria involve a calculation
of distance between squares on the board; this distance function varies with
the type of piece under consideration. For example, queens can move along
any line, while rooks can move only on ranks and files; thus, the span between
two fixed squares is not always equidistant for queens and rooks. Using the
standard (Euclidean) means of computing distance is not feasible, even as an
approximation, as it uses relatively slow floating-point calculations. Thus, func-
tions were written for the actual piece-wise distance [5]. “Rook-wise” distance,
known in mathematics as Manhattan distance, is represented by the following
general formula:

D(x, y) =

m∑
i=1

|xi − yi| .

“Queen-wise” distance, known as Chebychev distance, is given by the following
function:

D(x, y) =
m

max
i=1
|xi − yi| .

Kings, which move the same as queens, also use Chebychev distance. Except
that they can only reach half the squares on a chessboard, bishops also measure
distance Chebychev-style. For knights and their unusual L-shaped moves, no
suitable distance function could be found, so either of the above-noted functions
is used as an approximation in the program.

Following is a detailed description of the static evaluator; any numerical
constants cited refer to default values which may be changed by the user.

The base material value of a pawn is 100 points. Isolated pawns (those which
have no friendly pawns on adjacent files) are given a penalty which is a function
of the file they occupy: pawns on the outermost files lose 12 points, those on
files 2 and 7 lose 14, those on 3 and 6 lose 16, and those on the innermost lose
20. Pawns whose advance is restrained by an opposing pawn on an adjacent file,
and which have no friendly pawn to support that advance, are considered to be
backward, and lose 6 points. Doubled pawns—that is, pawns which occupy a
file containing other friendly pawns—are penalized 12 points. Finally, pawns
are given a bonus for proximity to the opposite edge of the board, effectively
receiving 1 point for each square distant from their home edge.

Knights start off at 330 points, and are given a 1-point penalty for each
square distant from either king. Knights are also given a bonus for inverse
Chebychev distance to the centre; the bonus starts at 0 in the corners and
increases by a factor of 10 per square towards the centre.

3

Bishops also have a base value of 330 points. The presence of both king’s and
queen’s bishops is necessary to avoid a penalty of 20 points. Individual bishops
receive bonuses for proximity to centre, calculated and weighted (by default) in
the same manner as for knights. Bishops also receive a bonus for mobility and
“X-ray” mobility through pieces except pawns. This bonus is 1 point for every
square under attack, plus a one-time 8-point bonus for attacks on an enemy
queen, rook, or king. The weights for the mobility and X-ray mobility attacks
are separately adjustable.

A rook is worth 500 points initially. Rooks receive a bonus for inverse Man-
hattan distance to the enemy king; the bonus increases by 20 points for every
square closer to the king. Mobility and X-ray mobility bonuses are handled the
same as those for bishops, and while the default weights are the same, they are
independently adjustable. Also, rooks lose 10 points for the presence of friendly
pawns on their file.

Queen heuristics are very simple: they start off at 900 points and receive
bonuses for their proximity to the centre (in increments of 10) and to the enemy
king (in increments of 20).

A king has no material value; such a number would be irrelevant as the
capture of the king signals the end of the game. Instead, kings are given a
penalty in steps of 10 for their proximity to the centre of the board. This penalty
is a function of the stage of the game, which is determined by the combined
base material value of the remaining pieces. If this sum is below a user-defined
threshold (default 1500), the board is considered to be in endgame and the
centre penalty is lifted. Kings are given a 20-point bonus for castling, and a
16-point penalty if they occupy a square which has no immediately adjacent
friendly pawns.

The score for a board is, in effect, the sum of the scores of the opponent’s
pieces subtracted from the sum of the scores of the current player’s pieces.
If the static evaluator inspects a board in checkmate, however, this evaluation
algorithm is dispensed with and the board is given a score of positive or negative
infinity, depending on which side has been mated. For obvious reasons, this
score is not user-adjustable. For a draw, however, the board value is user-
defined (default 0). The rationale for this decision is for chess matches: when a
computer has won the first four games in a six-game match, for example, there
is no further need to win subsequent games; a draw may therefore be valued as
a win (+∞). On the other hand, a computer losing 2–3 should count a draw as
a loss (−∞) in the sixth and final game.

3.3 Game tree search

Cheops uses as its game tree search a standard minimax search with alpha–beta
cutoff. One feature which was planned but dropped from the implementation
was the option to time-limit the computer opponent’s moves. It was felt that
this option was more trouble than was worth to implement as it would have
necessitated the installation of an iterative deepening algorithm. Such a fea-
ture would have resulted in better gameplay at the cost of exponentially longer
thinking time. The human playtesters found that using a regular three- or four-
ply search, typically completed within ten seconds, was challenging enough for
them.

Another feature left out of the final release was the option for players (human

4

or computer) to offer draws. It was decided that having the computer offer
a draw would be a sure sign to its opponent that it is losing. Conversely,
a computer opponent should never accept a draw offer, even if it is losing,
since the possibility should always be reserved for the human making a mistake
should the game continue. That said, heuristics for forced draws (stalemates,
triple occurrence, and the fifty-move rule) were still included in the program; a
winning program will generally avoid such a condition.

3.4 User interface

Cheops features only a simple text board display and command-line interface
reminiscent of GNU Chess [2]. Rather than have the static evaluation function
weights read from a file, as originally planned, a menu-based system was imple-
mented allowing the user to conveniently view and change individual weights
as the program is running. For reasons of portability, Cheops assumes nothing
about the user’s display terminal, and as such, long streams of output are not
paused after every page. Experience has shown that the program is best run
in an environment which supports at least fifty rows and forty columns, and/or
in a windowing system that includes a scroll-back buffer. Because of the highly
modularized nature of the Cheops source code, it would not be difficult to add
a system-dependent GUI for input and output.

4 Copyright

Copyright c© 1999–2016 Tristan Miller. Permission is granted to make and
distribute verbatim or modified copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Cheops is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with Cheops. If not, see http://www.gnu.org/licenses/.

References

[1] Eppstein, D. “Board representations.” Game Programming. http://www.
ics.uci.edu/~eppstein/180a/s97.html (14 April 1997)

[2] GNU Chess. Free Software Foundation. https://www.gnu.org/software/
chess/ (26 December 2016)

[3] Hyatt, R. M., A. E. Gower and H. L. Nelson. “Cray Blitz.” Computers,
Chess, and Cognition. New York: Springer–Verlag, 1989.

5

[4] Stanback, J. “Heuristic descriptions for CHESS.” GNU Chess. Free
Software Foundation, 1987. http://www.imsa.edu/~stendahl/comp/txt/
gnuchess.txt (11 May 1999)

[5] Wilson, D. R. and T. R. Martinez. “Improved heterogeneous distance func-
tions.” Journal of Artificial Intelligence Research, 6 (1997) pp. 1–34

6

