数据分析问题。特别是
在学习本课程后
学生应该能够
1.掌握基本知识,深入理解和掌握半参数回归的各种概念和定理以及公式的本质。学生应该能够不仅记住概念,也要学
会基本现代统计学方法, 同时能深刻理解如何利用统计深度学习解决问题。
2.掌握基本技能, 并能正确的进行数据分析。培养思维能力,提高对数据的分析能力,乃至概括的能力。
3.提高解决实际问题的能力。学习本课程后,学生应该能够使用学到的知识对实际问题建立合理模型, 从而解决相关的
半参数回归问题。
After completing this course, students should master the basic concepts and methods of semiparametric regression, be familiar
with various semiparametric regression methods and techniques and solve various types of data analysis problems. After
studying this course, students should be able to
1. Master the basic knowledge, deeply understand and master the various concepts and theorems of semiparametric regression
and the essence of the formula. Students should be able to not only remember concepts, but also basic modern statistical
methods, while also having a deep understanding of how to use semiparametric regression to solve problems.
2. Master basic skills and perform data analysis correctly. Develop thinking skills, improve the ability to analyse data, and even
generalize.
3. Improve the ability to solve practical probl
ems. After studying this course, students should be able to use the knowledge they
have acquired to develop a reasonable model of the actual problem to solve the relevant semiparametric regression problems.
Course Contents
(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the
difference.)
介绍
(
)
1. Introduction (2 hours)
参数回归
(
)
1.1 岭回归
1.2 LASSO
1.3 偏最小二乘法
2 Parametric Regression(4 hours)
2.1 Ridge Regression
2.2 Lasso
2.3 Partial Least Square
样条和局部平均法
3.1 方法
3.2 惩罚样条
3.3 CART
3.4 K-最近邻
3.5 核平滑方法
3 Splines & Local Averaging Methods (8 hours)
3.1 Methods
3.2 Penalized Splines
3.3 CART
3.4 K-nearest neighbours
3.5 Kernel smoothing