第三章
(
学时)
Chapter 3 Registration (8 hours)
第四章
函数型线性模型(
学时)
Functional linear regression model with scalar response variable, function
principal components regression, and functional linear mode
response
Chapter 4 Functional Linear models (12 hours)
Functional linear regression model with scalar response variable, function
principal components regression, and functional linear mode
response
第五章
贝叶斯高斯过程非参数回归模型(
学时)
Gaussian process regression analysis, the GPFDA package
Chapter 5 Bayesian nonparametric regression using Gaussian process prior (
hours)
Gaussian process regression analysis, the GPFDA package
第六章
函数型数据分析相关课题(
学时)
Further problems (8 hours)
(
○
1 考核形式 Form of examination;
○
2 .分数构成 grading policy;
○
3 如面向本科生开放,请注明区分内容。
If the course is open to undergraduates, please indicate the difference.)
课题表现 10% + 课程项目 50% + 平时作业 40%
Class Performance 10% + Projects 50% + Assignments 40%
附注:本科生的平时作业和课程项目将比研究生要求内容酌量减少。
教材及其它参考资料
Textbook and Supplementary Readings
Ramsay, J.O. and Silverman, B.M. (2005). Functional Data Analysis. Springer.
Ramsay, J.O., Hooker, G. and Graves, S. (2009). Functional Data Analysis in R and Matlab. Spinger.
Shi, J.Q. and Choi, T. (2011). Gaussian Process Regression Analysis for Functional Data
. Chapman &
Hall/CRC Press.