(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the
difference.)
Chapter 1:
Introduction to Categorical
Data
分类数据介绍
Description, modelling and inference of categorical data (2 hours).
分类数据的描述,建模和推断(2 学时)。
Chapter 2:
Contingency Tables
列联表
Description and inference of contingency tables. Specifically, introducing the
probability structure, parameter estimation and hypothesis testing of
contingency tables by starting from two-way tables and extending to multiway
ones; A software demonstration session included (8 hours).
列联表的描述和推断。 具体而言,从二向列联表开始,向多项列联表扩
展,介绍有关列联表的概率结构、参数估计和假设检验;包含软件演示
环节(8 学时)。
Chapter 3:
Generalized Linear Models
广义线性模型
Describing generalized linear models for binary and counts data, and
introducing the likelihood and inference methods of generalized linear model
(4 hours).
描述针对二项和记数数据的广义线性模型,并介绍广义线性模型的似然
函数和推断方法(4 学时)。
Chapter 4:
Logistic Regression
Logistic 回归模型
Interpreting parameters in logistic regression models, describing the fitting
methods, and introducing the building and selection of logistic regression
models; A software demonstration session included (6 hours).
诠释 logistic 回归模型中的参数,描述此类回归模型的拟合方法,并介绍
logistic 回归的模型构建和选择;包含软件演示环节(6 学时)。
Chapter 5:
Logit and Loglinear Models
Logit 及 loglinear 模型
Introducing the logit models for multinomial responses and the corresponding
inference methods, the loglinear models for contingency tables and the
corresponding inference methods, and also the building and extension of
logit/loglinear models; A software demonstration session included (10 hours).
介绍针对多项数据的 logit 模型及相应推断方法,针对列联表的 loglinear
模型及相应推断方法,以及 logit/loglinear 的模型构建和扩展;包含软件
演示环节(10 学时)。
Chapter 6:
Special Models and the
Related Inference
特殊模型和相关的推断方
法
Models and the related inference for special categorical response data,
including matched pairs and repeated response data; A software demonstration
session included (6 hours).
针对特殊分类响应数据的模型和推断方法,包括配对数据及重复响应数
据;包含软件演示环节(6 学时)。
Chapter 7:
Random Effect Models
随机效应模型
Generalized linear mixed model (random effect) and other mixture models for
categorical data: introducing the generalized linear mixed models for
clustered, binary and multinomial data, and the corresponding fitting and
inference methods; in addition, briefly introducing other mixture models for
categorical data; A software demonstration session included (8 hours).
广义线性混合模型(随机效应)及其他针对分类数据的混合模型:介绍
针对聚类数据、二项数据和多项数据的广义线性混合模型及相应的拟合