SEM, EPD, SIMS and TEM in industry and research practice.
7. Apply Bragg’s law to identify XRD peaks and their Miller indices, and calculate strains. Apply the tensor format of the
Hook’s law for simple stress and strain cases. Understand the difference between powder diffraction and single crystal
diffraction. Use the XRD technique to measure wafer title angles and orientations.
7. Understand common epitaxy techniques. Calculate lattice mismatch strains and thermal strains.
8. Understand basic lab safety operation rules and regulations.
1. (2 hours) 主要半导体材料,半导体器件的分类,应用。Major semiconductors, semiconductor devices, products based
on semiconductor materials and applications
2. (1.5 hours) 晶体的晶胞和原胞,14 种布拉维点阵。 Concept of primitive cells and unit cells and the 14 Bravais lattices.
3. (1.5 hours) 晶体的晶面,晶向,晶面族,晶向族的概念,米勒指数标出晶体的晶面和晶向。原子面间距。
Miller indices in labelling crystal directions, planes, and families.
4. (3 hours) 晶体缺陷,点缺陷的浓度。材料适配的概念和不适配的问题。计算简单的应力和热应变 Material defects,
crystallinity, epitaxy, lattice mismatch and thermal expansion mismatch
5. (6 hours) 硅和氮化镓的不同应用,硅和氮化镓的晶胞主要晶向和晶面,主要掺杂元素。主要化合物半导体的能带,对应
的吸收光谱和晶格常数。主要材料分析技术的使用工作原理和限制,包括原子力显微镜, X 光衍射,电镜,化学蚀刻,二次
电子质谱仪和隧道电子显微镜。Si and GaAs as two major semiconductors. Major material analysis techniques such as
XRD, AFM, SEM, EPD, SIMS and TEM.
6. (1 hours) 实验室安全操作和规程。basic lab safety rules and practice.
7. 课堂练习 Tutorials (6 hours) on
a. 晶胞和米勒指数 unit cells and Miller indices,
b. 材料分析 material analysis tools and examples.
8. 期中考试 one in-class midterm and feedback (2 hours)
9. 期末报告 Final presentations, discussions and feedback: (3 hours)
10. (2 hours) 扫描电镜 SEM measurement on-site observations
11. (2 hours) X 光衍射 XRD measurement on-site observations
12. (2 hours) 实验室安全认知 Lab safety on-site demonstrations