1. Pedretti, G.; Ielmini, D. In-Memory Computing with Resistive Memory Circuits: Status and Outlook.
Electronics 2021, 10, 1063. https://doi.org/10.3390/electronics10091063
2. Yan, B., Li, B., Qiao, X., Xue, C., Chang, M.-F., Chen, Y. and Li, H. (2019), Resistive Memory-
Based In-Memory Computing: From Device and Large-Scale Integration System Perspectives. Adv.
Intell. Syst., 1: 1900068. https://doi.org/10.1002/aisy.201900068
3. Chen, HY., Brivio, S., Chang, CC. et al. Resistive random access memory (RRAM) technology:
From material, device, selector, 3D integration to bottom-up fabrication. J Electroceram 39, 21–38
(2017). https://doi.org/10.1007/s10832-017-0095-9
4. Zhou, F., Zhou, Z., Chen, J. et al. Optoelectronic resistive random access memory for neuromorphic
vision sensors. Nat. Nanotechnol. 14, 776–782 (2019). https://doi.org/10.1038/s41565-019-0501-3
5. Zhou, F., Chai, Y. Near-sensor and in-sensor computing. Nat Electron 3, 664–671 (2020).
https://doi.org/10.1038/s41928-020-00501-9
6. Jain, Saurabh, Lin, Longyang, Alioto, Massimo Bruno (2021-06-23). ±CIM SRAM for Signed In-
Memory Broad-Purpose Computing from DSP to Neural Processing. IEEE JOURNAL OF SOLID-
STATE CIRCUITS.