1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请
联系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
计算机视觉与应用 Computer Vision and Applications
2.
授课院系
Originating Department
系统设计与智能制造学院 School of System Design and Intelligent Manufacturing
3.
课程编号
Course Code
SDM378
4.
课程学分 Credit Value
3
5.
课程类别
Course Type
专业选修课 Major Elective Courses
6.
授课学期
Semester
春季 Spring
7.
授课语言
Teaching Language
中英双语 English & Chinese
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
王振坤,助理教授
系统设计与智能制造学院(设计智造学院)
WANG Zhenkun, Assistant Professor
School of System Design and Intelligent ManufacturingSDIM
Email: wangzk3@sustech.edu.cn
9.
实验员/联系
方式
Tutor/TA(s), Contact
待公布 To be announced
10.
选课人数限额(不填)
Maximum Enrolment
Optional
待公布 To be announced
2
11.
讲授
Lectures
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
32
32
64
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
计算机程序设计基础 ACS102A)、高等数学(下)AMA102B)、线性代数 AMA107A
13.
后续课程、其它学习规划
Courses for which this
course is a pre-requisite
NIL
14.
其它要求修读本课程的学系
Cross-listing Dept.
NIL
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
本课程首先介绍计算机历程习模视觉特征提取以及学习方
法, 随后介绍当前计算机视觉中的热点技术,深度学习算法和模型及其在目标检测和追踪,图像分类以及分割,以及图
像风格移以及图像压感知等实际应用任。本课程的重是在理和掌基础方法理论模的基础上,通实际
应用项目的实践,进一步促进学生对计算机视觉理论方法的全面掌握。
This course provides an introduction to computer vision including history of vision techniques, vision geometry models,
vision learning models and traditional visual feature detection and learning methods. Besides, we will also discuss the
cutting-edge techniques employed in computer vision- deep learning models and their applications in objective detection
and tracking, image classification and segmentation, image style transfer and image compressed sensing. The focus of
the course is to not only help students to understand the fundamental methods and theoretic models, but also to
promote their comprehensive grasp of computer vision theories through a series of real-world case studies.
16.
预达学习成果 Learning Outcomes
完成该课程,学生能够做到:
1. 了解视觉计算的理论和实践。
2. 能够掌握传统视觉特征以及深度学习特征的区别。
3. 熟悉深度学习模型及其在计算机视觉低层次和高层次任务中的应用。
4. 能够使用代码实现经典的算法模型.
5. 构建计算机视觉应用.
1. Recognize and describe both the theoretical and practical aspects of computing with images.
2. Identify the differences between the traditional visual features and deep learning based features.
3. Become familiar with the major deep learning models involved in low-level and high-level computer vision tasks.
4. Implement the classic algorithms and models
5. Build computer vision applications.
17.
课程内容及教学日 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
3
第一周:导论
课程介绍
计算机视觉发展历程
计算机视觉技术基本概念
[实验]:搭建与配置环境, anacondapython pytorch
Week 1: Introduction
Curriculum introduction
Vision technique background
Basic vision concepts
[Lab]: Build programing platforms, including anaconda, python and pytorch etc.
第二周:视觉几何模型
变换模型
摄像系统
应用
[实验] 配置 IDE(Pycharm) jupyter,进行远程编程与调
Week 2: Geometry models
Transformation model
Camera system and model
Applications
[Lab]: Config IDE(Pycharm) and jupyter to remotely program and debug
第三周:视觉学习模型
判别模型
生成模型
应用
[实验]:图像及视频文件读取和显示
Week 3: Machine learning models in vision
Discriminative models
Generative models
Applications
[Lab]: read and show the image and video files
第四周:图像预处理与特征提取
预处理
描述子
特征降维
[实验]:项目一:图像滤波和特征可视化
4
Week 3: Image pre-processing and feature extraction
Image pre-processing
Descriptor
Feature dimension reduction
[Lab]: Project 1: Image filtering and feature visualization
第五周:特征匹配
点与局部图像块
边缘检测
线检测
[实验]:项目一:图像过滤和特征可视化
Week 5: Feature matching
Points and patches
Edges
Lines
[Lab]: Project 1: Image filtering and feature visualization
第六周:深度神经网络(一):
基础模型介绍
损失函数
应用
[实验]:项目二:基于深度学习的图像增强
Week 6: Deep learning
Basic models
Basic losses
Applications
[Lab]: Project 2: Image enhancement based on deep learning
第七周:深度神经网络(二)
前沿模型介绍
优化基础
应用
[实验]:项目二:基于深度学习的图像增强
Introduction to the state-of-the-art models
Fundamentals of optimization
5
Applications
[Lab]: Project 2: Image enhancement based on deep learning
第八周: 目标检测
HOG 特征和线性模型
瀑布模型与滑动窗机制
基于深度学习的目标检测
[实验]:项目三:目标检测
Week 8: Object detection
HOG features and linear classification
Cascade models and sliding windows
Deep learning-based models for object detection
[Lab]: Project 3: Objective detection
第九周: 图像分类
字典学习
特征学习
深度学习
[实验]:项目三:目标检测
Week 9: Image classification
Dictionary learning
Feature learning
Deep learning
[Lab]: Project 3: Objective detection
第十周: 图像语义分割
块分类
编码器/解码器结构
全卷积方法
[实验]:项目四:基于深度学习的图像分类
Week 10: Semantic segmentation
Patch classification
Auto-Encoder
FCN: Fully Convolutional Networks
6
[Lab]: Project 4: Deep learning based image classification
第十一周:传统跟踪方法
光流法
卡尔曼滤波
粒子滤波
[实验]:项目四:基于深度学习的图像分割 Week 11: Classical tracking methods
Optical flow
Kalman filter
Particle filter
[Lab]: Project 4: Image segmentation based on deep learning
第十二周: 高级跟踪算法
基于检测的跟踪
基于深度学习的跟踪算法
[实验]:项目四:基于深度学习的图像分割 Week 12: Advances in object tracking
Tracking by detection
Tracking using deep learning
[Lab]: Project 4: Image segmentation based on deep learning
第十三周: 图像风格迁移
图像重建
风格重建
风格迁移算法
[实验]:项目五:目标跟踪 Week 13: Image Style Transfer
Image reconstruction
Style reconstruction
Style transfer
[Lab]: Project 5: Object tracking
第十四周: 生成对抗模型与应用
生成器
判别网络
[实验]:项目五:目标跟踪
Week 14: Generative adversarial networks
7
Generator
Discriminator
[Lab]: Project 5: Object tracking
第十五周 图像压缩感知
测量矩阵
稀疏表示与学习
迭代重构算法
评价指标
[实验]:项目五:基于 GAN logo 自动生成
Week 15: Image compressed Sensing
Sensing matrix
Sparse representation
Iterative algorithms
Metrics
[Lab]: Project 5: 基于 GAN 的自动 logo 合成
第十六周:深度学习图像压缩感知
卷积网络
生成对抗网络
残差重构网络
[实验]:项目六(可选):基于深度学习的图像感知重构
Week 16 (Optional):
Convolutional neural network
GAN
Residual reconstruction network
[Lab]: Project 6(Optional): Deep learning based Image Compressed sensing
18.
教材及其它参考资 Textbook and Supplementary Readings
Textbook : "Computer Vision: Algorithms and
Applications" Website: http://szeliski.org/Book/
课程评估 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
8
课堂表现
Class
Performance
小测验
Quiz
课程项目 Projects
60%
NIL
评估学生项目
To assess students project
平时作业
Assignments
期中考试
Mid-Term Test
期末考试
Final Exam
期末报告
Final
Presentation
40%
NIL
评估学生项目
To assess students project
其它(可根据需要
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
20.
记分方式 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通过/不通过) Pass/Fail Grading
课程审批 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/委员会审议通过
This Course has been approved by the following person or committee of authority