1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联
系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
微分几何初步 Introduction to differential geometry
2.
授课院系
Originating Department
物理系 Department of Physics
3.
课程编号
Course Code
PHYS007
4.
课程学分 Credit Value
1
5.
课程类别
Course Type
专业选修课 Major Elective Courses
6.
授课学期
Semester
夏季 Summer
7.
授课语言
Teaching Language
英语 English
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
万义顿、复旦大学物理系、ydwan@fudan.edu.cn
9.
/
方式
Tutor/TA(s), Contact
待公布 To be announced
10.
选课人数限额(不填)
Maximum Enrolment
Optional
授课方式
Delivery Method
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
学时数
Credit Hours
16
2
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
高等数学(下)Calculus II AMA102B,
线性代数 A Linear Algebra A (MA107A) ,
电动力学 II Electrodynamics IIPHY208
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
N/A
14.
其它要求修读本课程的学系
Cross-listing Dept.
N/A
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
微分几何与拓扑是现代理论物理的基础,在广义相对论、场论,以及凝聚态物理等领域应用广泛。而爱因斯坦引力理论
是可以等价位黎曼微分几何。本课程着重介绍微分几何的各种基本概念,有时间的话还会涉及相关应用,旨在为将来深入
学习和运用微分几何打下基础。
Geometry and Topology are foundations of modern theoretical physics. They have broad applications in General
Relativity, Field Theory, and Condensed Matter Physics. In particular, Einstein Gravity is essentially Riemann Geometry.
This course will introduce various basic concepts of Differential Geometry and touch upon relevant applications, building
the foundations for deeper studies of the subject.
16.
预达学习成果 Learning Outcomes
学生能够基本掌握课程教授的内容。
The students will be able to grasp the content of the lectures.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
Lecture 1 Formal introduction to maps, vector spaces, topological spaces, etc. 2 hours
Lecture 2 Homotopy 2 hours
Lecture 3 Homology 2 hours
Lecture 4: Manifolds: basics (2 hours)
Lecture 5: Differential forms and de Rham cohomology2 hours
Lecture 6Manifolds: Lie groups and Lie algebras 2 hours
Lecture 7Fiber bundles: basics 2 hours
Lecture 8: Connections on fiber bundles (2 hours)
18.
教材及其它参考资料 Textbook and Supplementary Readings
3
1. Mikio Nakahara Geometry, Topology, and Physics, 2nd edition CRC Press 2003
2. Theodore Frendel The geometry of physics: an introduction, 3rd edition Cambridge University Press
2011
3. John Baez Gauge fields, knots, and gravity World Scientific 1994
4. 梁灿斌、周彬 微分几何入门与广义相对论第二版上册 University Of Chicago Press 1984
5. Chris J. Isham Modern Differential Geometry for physicists World Scientific 1999
课程评估 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
课堂表现
Class
Performance
小测验
Quiz
100%
课程项目 Projects
平时作业
Assignments
期中考试
Mid-Term Test
期末考试
Final Exam
期末报告
Final
Presentation
其它(可根据需
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
20.
记分方式 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通/不通过) Pass/Fail Grading
课程审批 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/员会审议通过
This Course has been approved by the following person or committee of authority
物理系教学指导委员会
Education Instruction Committee of Physics department