量子力学 II PHY305 和固体物理 PHY321-15
Quantum Mechanics II and Introduction to Solid State Physics 本科生研究生
先修要求相同
Same for undergraduates and graduates.
超导体在临界温度以下具有零点阻和完全抗磁性两种物理性质。自 1911 年第一个汞超导体被发
现以来,超导物理至今仍是凝聚态物理的核心课题。1986 高温超导体被发现,不同于此前发现的金属
和合金等低温超导体,这类材料只需要降温到一个相对较高的温度(比如 93 K 的 Y-Ba-Cu-O 体
系),就可实现完全没有电阻地导电,同时对很强的磁场产生排斥效应。高温超导材料被发现至今已
经三十多年,然而其中微观物理机制依然是个谜。在传统的金属合金超导体中,电子借助吸引相互作
用而两两配对,并在低温下凝聚成超流态,从而电流可以无阻力地流动。而高温超导体的配对机理,
仍然是当今物理学皇冠上的明珠。理解了高温超导机理,可以帮助我们设计常温超导体,造福社会。
本课程沿着超导物理研究的历史脉络,研讨超导物理的基本理论以及实验进展,侧重于非常规超导实
验研究方面的讨论。本科生研究生课程内容相同。
Superconductors exhibit zero resistance and complete diamagnetism below critical temperatures. Since the
discovery of the first Mercury superconductor, superconductivity has been the central topic in condensed
matter physics. In 1986, a new class of materials called high-temperature superconductors (HTS) was
discovered. Unlike conventional metal or alloy superconductors with low critical temperatures, HTS can
achieve zero resistance and complete diamagnetism at much higher temperature (e.g. 93 K for Y-Ba-Cu-O).
Although more than 3 decades has past, the mechanism of HTS is still a mystery. The understanding of HTS
could potentially help us design room-temperature superconductors and benefit the society.
This course lays out the history of the research of superconductivity, discuss the basic theory and
experimental progress in the field, with emphasis in experimental research in unconventional
superconductivity. The course content will be same for undergraduates and graduates.
以教师课堂教授为主,学生文献阅读和讨论为辅。本科生研究生教学方法相同。
Mainly teacher' classroom teaching, supplemented by students' literature reading and discussion.
Undergraduate and graduate teaching methods are the same.