2. Best linear unbiased estimation, spatial interpolation and prediction based on Kriging;
3. Sample Variograms modeling and parameter estimation;
4. Random variables and parameter distribution, principal component analysis;
5. Time series analysis;
6. Visualization of spatiotemporal multidimensional data;
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
1. 地球科学数据分析的背景介绍、基本方法,单变量和多变量数据描述 [3 课时]
2. 数据空间分布、空间连续特征 [3 课时]
3. 最优线性无偏估计、Kriging [9 课时]
4. Co-Kriging、Block Kriging [6 课时]
5. 采样策略、交叉验证 [3 课时]
6. 样本 Variograms 建模与参数估计 [6 课时]
7. Kalman Filter 简介 [3 课时]
8. 时间序列分析(滤波、回归、调和分析、频谱分析、小波分析)[9 课时]
9. 经验模态正交分解(主成分分析)[6 课时]
1. Background introduction, univariate and multivariate data analysis of geoscience data analysis [3 hours]
2. Spatial distribution, Spatial continuous characteristics [3 hours]
3. Best linear unbiased estimation, Kriging [9 hours]
4. Co-Kriging, Block Kriging [6 hours]
5. Sampling strategy, cross-validation [3 hours]
6. Sample variogram modeling and parameter estimation [6 hours]
7. Introduction to Kalman Filter [3 hours]
8. Time series analysis (filter, regression, harmonic analysis, spectrum analysis, wavelet analysis) [9 hours]
9. Empirical Orthogonal Function (Principal Component Analysis) [6 hours]
Edward H. Isaaks and R. Mohan Srivastava, An introduction to applied geostatistics, Oxford University Press,
New York, USA, (1989).