本课程系统介绍地球科学(特别是海洋、大气、地球物理、遥感等学科)时空多维数据分析方法,包含空间最优插值、样
本 Variograms 建模与参数估计、采样策略、Kalman Filter、时间序列分析、数据降维、特征提取等内容,并基于 Matlab
实践数据分析处理与可视化,为学生进一步学习反问题与数据同化提供必要的基础知识。通过学习本课程,使学生加深对
地球科学问题中时空多维数据分析技术的理解与应用能力。
This course covers various processing and analysis methods for multidimensional data in the geosciences,
including multivariate description and analysis, optimal interpolation, sample variograms modeling and
parameter estimation, spatial interpolation (statistical Kriging methods, Bayesian-based Kalman filter),
time-series analysis (filter, regression, harmonic analysis, spectrum analysis, wavelet analysis), search
strategy, principal component analysis and scientific visualization based on Maltab. It provides the basic
knowledge for students to further study inverse problems and data assimilation, and students would enhance
their understanding and skills for spatialtemporal multidimensional data analysis in geoscience problems.
学生完成本课程后,将对时空多维数据分析相关的问题建立批判性的思考,并掌握以下知识:
1. 时空多维数据质量控制与预处理;
2. 最优线性无偏估计、基于 Kriging 的空间插值与预测;
3. 样本 Variograms 建模与参数估计;
4. 随机变量和参数分布,数据降维;
5. 典型时间序列分析;
6. 时空多维数据可视化;
Upon completion of this course, students will develop critical thinking on issues related to the analysis of
spatiotemporal multidimensional data and will learn the following knowledge:
1. Quality control and preprocessing of spatiotemporal multidimensional data;