结构和能量特性。
2)氧化物铁电和铁磁材料的热力学理论(2 学时):铁电性和磁性的微观起源、铁电材料的一级和二级相变、Landau-
Devenshire 理论、铁磁相变、铁电和铁磁相变的热力学描述、微磁理论、电致伸缩、磁致伸缩、磁晶各向异性能
3)氧化物铁电和铁磁材料微结构演化的相场建模与模拟(3 学时):Time-dependent Ginsburg-Landau 方程、应力平衡
方程、Maxwell 方程、铁电和铁磁材料的相场模型、 相场方程的数值求解、磁电畴结构、拓扑磁电畴结构,磁电畴结构
在外场作用下演化的相场模拟
5. 氧化物信息功能材料与器件(共 4 学时)
1)氧化物信息功能薄膜及制备方法(1 学时):氧化物薄膜的物理化学制备原理与方法,激光脉冲沉积方法;
2)氧化物外延薄膜生长与原子力显微镜辅助制备(1 学时):薄膜外延生长动力学、原子力显微镜辅助生长、氧化物外
延薄膜结构调控;
3)压电力显微镜测试(1 学时):铁电性及其物性、铁电畴和畴翻转、铁电体的特性、压电力显微镜工作原理及其在铁
电和磁电薄膜中的表征
4)信息功能器件(1 学时):铁电随机存储、铁电场效应存储、极性拓扑结构信息存储。
1. Basic concepts and structure-function relationship of functional oxide materials (4 Credit hours in total)
1) Basic concepts of functional oxide materials and their applications: Crystal structure, important significance in the
field of information and energy; (2 hours)
2) Structure-function relationship and examples; Thermal-, electrical-, and magnetic-properties manipulation and
examples. (2 hours):
2. Fundamentals of electron scattering (8 Credit hours in total)
1) Introduction to electron scattering and transmission electron microscopy (TEM): Elastic and inelastic scattering;
Spatial resolution; Aberration correction technology; Monochromator technology; (1 Credit hour)
2) Electron microscope structure and sample preparation: Electron gun; Magnetic prism; Electronic detector; In-situ
technology; Nanostructured samples; Cross-sectional TEM sample; Plan-view TEM sample; FIB sample preparation; (1
Credit hour)
3) Electron diffraction and imaging: Selected area electron diffraction; Convergent electron diffraction; Kikuchi lines;
Light field image; Dark field image; High resolution image; Scanning transmission image; Atomic resolution image; (4
Credit hours)
4) Inelastic electron scattering: Energy spectrum; Electron energy loss spectrum; Core electron transition; Lattice
vibration;(2 Credit hours)
3. Fundamentals of X-ray Diffraction (8 Credit hours in total)
1) Basic concepts of crystal structure: lattice and basis; unit cell; the seven primitive crystal systems; reciprocal lattice;
(2 Credit hours)
2) Introduction to X-ray: X-ray source; Interaction with matter, X-ray elastic scattering; Wave-particle duality; wave of
light; Double-slit and multi-slit interference; grating; Bragg’s Law diffraction; Laue condition; Ewald sphere; (2 Credit
hours)
3) X-ray scattering: Single electron scattering; Single atom scattering (atomic scattering factor); unit cell scattering
(structure factor); Crystal scattering; extinction; (2 Credit hours)
4) Some examples and frontiers of thin film diffraction (surface diffraction). (2 Credit hours)
4. Multi-scale simulation of functional oxide materials (8 Credit hours in total)
1) Density functional theory and First-Principle calculation: Hamilton; Schrodinger equation; Density functional theory;
Multi-electron wave function; Pseudopotential; Plane-wave expansion method; Exchange correlation function; Local
density approximation; Generalized gradient approximation; Hybrid function; Calculations of the electronic, structural