课程大纲
COURSE SYLLABUS
1.
课程代码/名称
Course Code/Title
量子材料与量子传感
Quantum Materials and Quantum Sensing (QMQS)
2.
课程性质
Compulsory/Elective
选修/Elective
3.
课程学分/学时
Course Credit/Hours
3
4.
授课语
Teaching Language
英文/English
5.
授课教
Instructor(s)
Li Baowen, 李保Department of Materials Science and Engineering,
libw@sustech.edu.cn,
6.
是否面向本科生开放
Open to undergraduates
or not
/Yes /for Junior and Senior
Undergraduate students
7.
先修要
Pre-requisites
If the course is open to
undergraduates, please indicate the difference.)
本科生预修课要求(同时满足以下两点要求):
1. PHY206-15 量子 I PHY305 量子 II MSE328
物理);
2. PHY321-15 固体物理(或者 MSE203 晶体学)。
8.
教学目
Course Objectives
If the course is open to undergraduates, please indicate the
difference.)
量子相干性,量子遂穿和量子纠缠等量子原理来探测如磁场比如单自旋,电场,重力场,质量,加
度等微弱变化。量子传感也为探测量子材料里的奇异性质提供了精准和超灵敏度的测量手段。
这个课程是给学生提一个关于量子材料与量子传感的最新研究的一个全面的了解。通过这门课的学
习,学生不仅能够系学习量子材料和量子传感的理论基础,而且对这两个方向的的前沿研究有一
深入的了解。学生可以开始进入量子材料和量子传感里自己感兴趣的课题进行研究
.
Quantum materials are the basis and building blocks of quantum technology including quantum
computing, quantum communication, and quantum sensing.. Quantum sensing utilizes quantum
principles such as superposition, coherence, quantum tunnelling, and entanglement to detect
very tiny changes in physical quantities such as magnetic field change like single spin, minor
changes of gravitational force, mass, acceleration etc. Quantum sensing also provides very
accurate and supersensitive tools to detect exotic properties in quantum materials.
This course intends to provide students with a comprehensive picture of current research topics
in quantum materials and quantum sensing. After this course, the students will not only be able
to grasp the relevant theories and methods, but also get a deeper understanding of the current
research topics. The student shall be ready to start their research in quantum materials and
quantum sensing.
9.
教学方
Teaching Methods
If the course is open to undergraduates, please indicate the
difference.)
Lecture (42) + Tutorials (6), Total: 48 hours
10.
教学内
Course Contents
(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the
difference.)
这个课程首先会给学生系统介绍量子材料和传感的理论基础包括量子力学的主要原理(量子相干性,量子叠加原理,
量子隧穿,量子纠缠)和固体物理的能带理论。然后会逐个介绍量子材料的主要方向包括超导材料,拓扑材料等,具
体内容如下表。为了丰富和加深学生对各个方向的认识,该课程还会安排 6 次客座讲座,邀请国内外在某个特定领域
的专家给学生介绍该领域的最新进展。
Section 1
Basics of quantum mechanics and solid state
physics - Band theory
Section 2
/Strongly correlated systems: Conventional
Superconductor:
Section 3
/Strongly correlated systems: High-T_c
Superconductor
Section 4
T 拓扑超导/opological superconductor
Section 5
拓扑绝缘体,热电材料/Topological Insulator, thermoelectrics
Section 6
巨磁阻和其它磁性材料/GMR and other magnetic materials
Section 7
自旋电子学,自旋流体,斯格米子/Spintronics, Spin Liquid, skyrmion
Section 8
量子霍尔效应/Quantum Hall Effect
Section 9
量子自旋霍尔效应/Quantum Spin Hall Effect
Section 10
量子反常霍尔效应/Quantum Anomalous Hall Effect
Section 11
磁场传感器:核磁共振,NV/ Magnetic Field sensor: NMR, NV,
Section 12
磁场传感:单自旋超导量子涉仪/Magnetic Field sensor: Single spin,
SQUID
Section 13
Electric Field Sensor: Trapped
ions, charged qubit
Section 14
/ / / / Force/Acceleration/Mass Sensor:
Interferometer
Section 15
/ / / /Force/Acceleration/Mass
Sensor: Optomechanics, quantum phononics
Section 16
量子雷达,鬼成象/Quantum Radar, Ghost Imaging
…………
11.
课程考
Course Assessment
1
Form of examination;
2
. grading policy;
3
If the course is open to undergraduates, please indicate the difference.)
本课程采用项目报告方式考核。学生可以从任课老师给出的众多研究方向里选出一个自己感兴趣的题目,然后做文献
调研,找出有价值的具体的研究课题进行研究。学生需要在期中和期末做两次口头报告和书面报告。最终成绩按照期
40%20%20% 60%30%30%
Applied Physics Letter 格式。期中要求 2 页的开题报告, 期末要求 10 页的最终报告
The students’ scores will be based on the performance of a selected project:
(1) Midterm presentation (20%), 2-page-double-line report (20%),
(2) Final project presentation (20%) and final report (40%) (10-page, Applied Physics
Letters style).
12.
教材及其它参考资料
Textbook and Supplementary Readings
“量料与感”是崭的研,本是世首创还没科书以用 学生
上课师的线广的参考文
npj Quantum Materials
学生跟踪了解这个方向的主要来源。
There is no textbooks available. The main references are:
1. F. Giustino et al, The 2021 Quantum Materials Roadmap”, J. Phys. Mater. 3, 042006
(2020).
2. “Quantum Materials for Energy Relevant Technology”,
http://science.energy.gov/bes/community-resources/reports/
3. Y. Tokura, M. Kawasaki & N. Nagaosa, Emergent functions of quantum materials,
Nature Phys. 13, 1056 (2017).
4. C L Degen, “Quantum sensing”, Review of Modern Physics 89, 035002 (2017)
5. npj Quantum Materials.
6. 刘俊明-“量子材料”科普微信公众号。