理论和实验课(64 课时):
导论(2 课时)
网络的表示和衡量 (4 课时)
社交网络和经济网络的实证背景 (4 课时)
基于随机图模型的网络(4 课时)
网络的表示和衡量习题课(2 课时)
随机网络的生长(4 课时)
随机图模型习题课(2 课时)
策略性的网络生长(4 课时)
网络扩散模型(4 课时)
网络生长习题课(2 课时)
基于网络的学习(4 课时)
网络扩散习题课(2 课时)
网络上的决策,行为和博弈(4 课时)
基于网络学习的习题课(2 课时)
通过网络连接的市场 (4 课时)
网络上决策,行为和博弈的习题课(2 课时)
基于博弈论的网络形成建模(4 课时)
社交互动的观察和衡量(2 课时)
文献选读 1(4 学时)
文献选读 2 (4 学时)
Lectures and Tutorial (64 credit hours)
1. Introduction (2 credit hours)
2. Representation and Measurement of Networks (4 credit hours)
3. Empirical Background on Social Networks and Economic Networks (4 credit hours)
4. Network based on random graph model (4 credit hours)
5. Network Representation and Measurement Exercises (2 credit hours)
6. Growth of Random Networks (4 credit hours)
7. Random graph model exercises (2 credit hours)
8. Strategic Network Growth (4 credit hours)
9. Network Diffusion Model (4 credit hours)
10. Network growth exercises (2 credit hours)
11. Web-based learning (4 credit hours)
12. Network Diffusion Exercises (2 credit hours)
13. Decision-making, Behaviour and Gaming on the Internet (4 credit hours)
14. Exercises based on web-based learning (2 credit hours)
15. Market Connected via Internet (4 credit hours)
16. Exercises on decision-making, behaviour and games on the Internet (2 credit hours)
17. Network formation modelling based on game theory (4 credit hours)
18. Observation and Measurement of Social Interactions (2 credit hours)
19. Selected Readings 1 (4 credit hours)
20. Selected Readings 2 (4 credit hours)
Matthew O. Jackson, Social and Economic Networks, Princeton University Press
David Easley, and Jon Kleinberg. Networks, crowds, and markets. Vol. 8. Cambridge: Cambridge university press, 2010
William L Hamilton. Graph representation learning