课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
理论和实验课(64 课时):
1. 线性回归 (4 课时)
2. 线性面板数据模型 (4 课时)
3. 简单线性回归和面板数据回归实验(4 课时)
4. 空间面板数据分析 (4 课时)
5, 空间面板数据回归实验(4 课时)
6. 非参数方法:核密度估计 (4 课时)
7. 核密度估计实验(4 课时)
8. 因果关系和工具变量 (4 课时)
9. 自然实验 (4 课时)
10. 工具变量和自然实验实验课 (4 课时)
11. 断点回归设计 (4 课时)
12. 断点回归设计实验(2 课时)
13. 匹配方法 (4 课时)
14. 匹配方法实验(2 课时)
15. 离散变量模型 (4 课时)
16. 离散变量模型实验(2 课时)
17. 生存模型 (4 课时)
18. 生存模型实验(2 课时)
Lectures and Tutorial (64 credit hours)
1. Linear Regression (4 credit hours)
2. Linear Panel Data Model (4 credit hours)
3. Simple Linear Regression and Panel Data Regression Lab Session (4 credit hours)
4. Spatial Panel Data Analysis (4 credit hours)
5. Spatial panel data regression Lab Session (4 credit hours)
6. Nonparametric Methods: Kernel Density Estimation (4 credit hours)
7. Kernel Density Estimation Lab Session (4 credit hours)
8. Causation and Instrumental Variables (4 credit hours)
9. Natural Experiment (4 credit hours)
10. Instrumental Variables and Natural Experiment Lab Session (4 credit hours)
11. Regression discontinuity design (4 credit hours)
12. Regression discontinuity design Lab Session (2 credit hours)
13. Matching Method (4 credit hours)
14. Matching Method Experiment Lab Session (2 credit hours)
15. Limited Dependent Variable Model (4 credit hours)
16. Limited Dependent Variable Model Lab Session (2 credit hours)
17. Survival Analysis (4 credit hours)
18. Survival Analysis Lab Session (2 credit hours)