This course introduces students to data-driven analysis, modeling and decision making for complex real systems
based on discrete-event simulation. We mainly focus on problems that have no closed-form solutions but with
abundant data resources. The course provides a solid mathematical/statistical grounding in simulation and some
tools to solve actual problems. It will cover data collection and input data analysis, modeling techniques, random
number generators, discrete-event simulation approaches, simulated output data analysis, simulation variance
reduction techniques and state-of-the-art simulation software.
本门课程以离散事件仿真技术为基础,教授如何利用现实系统的数据进行分析、建模和决策。我们将主
要针对缺乏闭式解但拥有丰富数据资源的决策问题。本门课程将讲解关于仿真的数学、统计学背景,并
介绍如何利用仿真解决实际问题。具体介绍的主题包括数据收集和输入数据分析、建模技术、随机数生
成、离散事件仿真方法、仿真数据分析、方差缩减以及先进的仿真软件。
Students will be able to demonstrate knowledge of data collection and analysis, stochastic simulation models and
interpret results from simulation analysis and how to apply those results to real-world problems.
Students will be able to build simulation models with simulation software.
Students will be able to use simulation in their research and go into an advanced course on simulation
methodology.
学生能够掌握如何对真实系统进行数据收集和分析、建立随机仿真模型的知识,能够进行仿真结果分析,并将其使用到实
际问题之中。
学生能够使用仿真软件自主建模。
学生能够将仿真技术应用到对其他领域的研究之中,并为进阶的仿真理论学习打下基础。