1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际课需要或在课程检讨之后产生变动。如对课程有任何疑问,
联系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
运筹与决策分析 Prescriptive Decision Analytics
2.
授课院系
Originating Department
Department of Information Systems & Management
Engineering
3.
课程编号
Course Code
MIS204
4.
课程学分 Credit Value
3
5.
课程类别
Course Type
专业基础课 Major Foundational Courses
6.
授课学期
Semester
春季 Spring,秋 Fall
7.
授课语言
Teaching Language
英文 English
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
allinstructors
顾理一
信息系统与管理工程
guly@sustech.edu.cn
9.
验员/教、属学联系
方式
Tutor/TA(s), Contact
待公布 To be announced
10.
选课人数限额(可不)
Maximum Enrolment
Optional
11.
授课方式
Delivery Method
讲授
Lectures
实验/
Lab/Practical
其它(具体注明)
OtherPleasespecify
总学时
Total
2
学时数
Credit Hours
32
32
64
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
None
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
MIS404 运营管理
14.
其它要求修读本课程的学系
Cross-listing Dept.
None
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
This course is designed as an introduction to the field of Operations Research/Operations Management (OR/OM). The
focus will be on the application of the scientific approach to decision-making. Small case studies will be covered. It is not
our intent to train OR theoreticians in this course. Rather, we seek to convey an appreciation for what an OR analyst
does and why it is important. Thus, students who successfully complete this course are expected to have built the
capability for modeling business related problems and prepare to get solutions by OR techniques.
本课程旨在对 Operations Management/Operations Research OR / OM)领域进行初步的介绍, 重点将会是如何在决
策过程中使用科学的方法。 课程将结合实际案例的研究分析。 在本课程中学生不仅是在学习 OR 领域的理论在实际生活
中的运用, 更希望学生能了解到 OR 为何重要,以及 OR 分析师的工作内容。 因此,成功完成本课程的学生应当具备对
商务问题分析建模的能力,并通过 OR 方法求解的能力。
16.
预达学习成果 Learning Outcomes
By the end of this course, students are expected to be able to
1. Identify real-world objectives and constraints based on the descriptions of actual decision-making problems;
2. Formulate problems with linear programming models;
3. Understand the fundamental models of inventory and queueing theory;
4. Derive solutions using software;
5. Make recommendations based on solutions, analysis, and limitations of model
课程结束时,学生应习得如何:
1. 根据对实际决策问题的描述确定目标和约束条件;
2. 对问题建立线性规划模型;
3. 了解基本的库存和排队论模型;
4. 使用软件求解;
5. 根据问题的解、分析和模型局限性提出建议。
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
理论(32 学时) 实验(32 学时)
3
Week 1(理论 2 学时): 课程介绍 Introduction
Lab 1(实验 2 学时): 实验课介绍 Introduction to the lab
Week 2-4(理论 6 学时): 线性规划:介绍,敏感度分析,对问题求解的理解,营销、金融和运营管理中的应用,高级
线性规划应用 Linear Programming: Introduction, Sensitivity analysis and interpretation of solution, Application in
marketing, Finance, and Operations Management, Advanced linear programming application
Lab 2-4(实验 6 学时): 将线性规划应用到实际问题求解中 Applying linear programming in solving real-world problems
Week 5-6(理论 4 学时): 分配和网络模型:运输、转运和分派问题,最短路径问题,最大流问题 Distribution and
Network Models: Transportation, transshipment, and assignment problems, Shortest route problem, Maximal flow
problem
Lab 5-6(实验 4 学时): 分配和网络模型实验课 Lab tutorial for distribution and network models
Week 7(理论 2 学时): 整数型线性规划 Integer Linear Programming
Lab 7(实验 2 学时): 整数型线性规划实验课 Lab tutorial for integer linear programming
Week 8(理论 2 学时): 非线性优化模型 Nonlinear Optimization Models
Lab 8(实验 2 学时): 非线性优化模型实验课 Lab tutorial for nonlinear optimization models
Week 9(理论 2 学时): 期中考试 Midterm Exam
Lab 9(实验 2 学时): 期中考试答案讨论 Midterm exam solution
Week 10(理论 2 学时): 任务管理 Project Management
Lab 10(实验 2 学时): 任务管理实验课 Lab tutorial for project management
Week 11-12(理论 4 学时): 库存模型 Inventory Models
Lab 11-12(实验 4 学时): 库存模型实验课 Lab tutorial for inventory models
Week 13(理论 2 学时): 排队模型 Waiting Line Models
4
Lab 13(实验 2 学时): 排队模型实验课 Lab tutorial for waiting line models
Week 14(理论 2 学时): 拟真 Simulations
Lab 14(实验 2 学时): 拟真实验课 Lab tutorial for simulations
Week 15(理论 2 学时): 决策分析 Decision Analysis
Lab 15: (实验 2 学时) : 决策分析实验课 Lab tutorial for decision analysis
Week 16(理论 2 学时): 预测 Forecasting
Lab 16(实验 2 学时): 预测实验课 Lab tutorial for forecasting
实验课将会包含对应周理论课内容的计算机实现/求解及例题。
Labs will cover computer solution/realization and example problems of the lecture contents delivered in the
corresponding weeks.
18.
教材及其它参考资料 Textbook and Supplementary Readings
An introduction to Management Science, Quantitative Approaches to Decision Making, by David R. Anderson, Dennis J.
Sweeney, Thomas A. Williams, Jeffrey D. Camm and Kipp Martin, 13
th
Edition
Introduction to Management Science, by Bernard W. Taylor III, 11
th
edition
课程评 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
5
课堂表现
Class
Performance
小测验
Quiz
10
课程项目 Projects
平时作业
Assignments
30
期中考试
Mid-Term Test
25
期末考试
30
5
Final Exam
期末报告
Final
Presentation
其它(可根据需要
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
20.
记分方 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通过/不通过) Pass/Fail Grading
课程审 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/委员会审议通过
This Course has been approved by the following person or committee of authority