This course provides an introduction to artificial intelligence in Medicine (AIM). Topics talked will help students to
achieve the following 4 main objectives:
1) Highlight fundamental AI concepts and development milestones: introduce the AI development history, the
formation of some key AI concepts like Agent, Learning, Reasoning and key algorithms like Perceptron, SVM, CNN
algorithms, and importantly biological, psychological and medical foundations behind AI development. Teaching
medical students the inherited relationship between the AI and Medicine development.
2) Introduce the AI models, algorithms and platforms behind the medicine research in terms of CAD (Computer Aided
medical Diagnosis) for medical disease screening, CAI (Computer Aided Intervention) for medical operation
planning/intervention/evaluation.
3) Introduce the popular deep neural network ALPHAFOLD and various popular deep learning network structures and
development platform. Introduce data driven deep learning model and how it can be combined with the medicine big
data to assist medical science discovery.
4) Inspire student’s interest using AI for their medical career: In order to encourage students to engage AI in their
medical careers and study, various AI medical applications will be introduced and discussed. Students are asked to
work on AI medical application projects with the help from clinicians, group project presentation will be graded.
医学人工智能导论课程将介绍医学人工智能的基本概念及理论,将从以下 4 个方面进行展开:
1) 重点介绍人工智能的基本概念和发展里程碑:介绍人工智能的发展历史、智能体、学习、推理等一些关键人工智
能概念的形成,以及感知器、SVM、CNN 算法等关键算法。以及人工智能发展背后重要的生物学、心理学和医学基础。
教导医学生掌握人工智能与医学发展之间的内在传承关系。
2) 介绍医学研究背后的人工智能模型、算法和平台,包括 CAD(计算机辅助医疗诊断)和计算机辅助医学疾病筛
查、CAI(计算机辅助干预)和医疗手术规划/干预/评估。
3) 介绍流行的深度神经网络 ALPHAFOLD 和各种流行的深度学习网络结构和开发平台。介绍数据驱动的深度学习模
型,以及如何将其与医学大数据相结合,以帮助医学科学发现。
4) 激发学生在医疗职业业中使用人工智能的兴趣:为了鼓励学生在医疗事业和学习中使用人工智能,将介绍和讨论
各种人工智能医疗应用。学生们被要求在临床医生的帮助下从事人工智能医学应用项目,小组项目演示将被评分。