1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请
联系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be directed to the
course instructor.
1.
课程名称 Course Title
能源材料化学
Energy Materials Chemistry
2.
授课院系
Originating Department
机械与能源工程系
Department of Mechanical and Energy Engineering
3.
课程编号
Course Code
ME373
4.
课程学分 Credit Value
3
5.
课程类别
Course Type
专业核心课 Major Core Courses
6.
授课学期
Semester
秋季 Fall
7.
授课语言
Teaching Language
中英双语 English & Chinese
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list all
instructors
曾国松,助理教授,机械与能源工程系
Emailzenggs@sustech.edu.cn
Guosong Zeng, Assistant Professor,
Department of Mechanical and Energy Engineering,
Emailzenggs@sustech.edu.cn
9.
实验员/系、
方式
Tutor/TA(s), Contact
待公布 To be announced
10.
选课人数限额(可不填)
Maximum Enrolment
Optional
2
11.
讲授
Lectures
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
48
48
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
能源工程基础(ME304Fundamentals of Energy Engineering
13.
后续课程、其它学习规划
Courses for which this course is a
pre-requisite
14.
其它要求修读本课程的学系
Cross-listing Dept.
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
能源材料化学是材料科学、化学、能源工程以及表面化学的一个有机结合,是系统性学习能源材料生长制备,能量材料测
试与分析,材料的界面现象,表界面化学反应过程等与能源工程应用直接相关的基础知识的课程。能源材料化学具有交叉
学科的突出性质,作为化学研究和新能源材料技术的一个关键领域正在世界范围内获得越来越广泛的认识重视。本课程的
教学目的是使学生理解组成某种材料的原子、离子或者分子的排列组合与其宏观结构和性能之间的内在联系,不同化学反
应过程在材料表面、界面处的反应过程,能源材料的制备原理,使学生学会从原子和分子水平的观点来思考和解决相关的
能源材料科学问题,掌握表面化学与材料科学与工程尤其是能源工程的内在联系,了解材料科学领域在能源研究及应用方
面的最新进展,以及掌握相关材料合成及测试分析方法,实现针对某技术问题开展材料设计与分析的能力培养。 为本科生
奠定良好的材料化学知识基础和思维方法,为后续课程的学习服务。本课程的主要教学内容包括能源材料化学概论;晶体
学与表界面热力学基础;界面工程;表界面催化过程;表界面机械力学过程;能源材料生长与改性技术;能源材料测试与
分析方法;材料化学在能源领域应用等。希望通过本课程的教学能更广泛地向工程学科的学生传达本领域激动人心的研究
方向以及能源材料化学为能源技术提供的机会。
Energy materials chemistry is an interdisciplinary course among materials science, chemistry, energy engineering and surface
chemistry, to systematically study the energy material growth, material testing and analysis, interface phenomena, surface/interface
chemical reaction process, and applications in energy field. Energy materials chemistry has a broad-based, multidisciplinary or
interdisciplinary nature. As a key area of chemical research and new materials technology, it is gaining more and more recognition
worldwide. The purpose of this course is to equip students with the understanding of the intrinsic link between the arrangement of
atoms, ions, or molecules that make up a material and its macrostructure and properties, chemical reaction process at
surface/interface, principles of energy materials growth techniques, etc., allows students to learn to apply and address related
material science issues from an atomic and molecular level perspective. This course will also help students developing intrinsic links
between chemistry and materials science and engineering, especially the applications in energy engineering, to understand the latest
advances in applied chemistry and chemistry concepts in materials science and energy field, as well as some basic material synthesis
and characterization techniques, to achieve the development of capability for material design and solution to specific problems. To
lay a good material chemistry knowledge base and thinking method for undergraduate students, and to provide services for the
follow-up courses. The main teaching contents of this course include the introduction of energy materials chemistry; crystallography
and surface/interface thermodynamics; interface engineering; surface/interface catalysis; surface/interface mechanics; energy
material growth and property modification; energy material testing and analysis; and the application of energy material chemistry in
the energy field. It is hoped that the teaching of this course will more widely convey to students in the engineering disciplines the
exciting research directions in this field and the opportunities that energy materials chemistry provides for new materials
technologies and energy applications.
16.
预达学习成果 Learning Outcomes
3
1. 理解组成某种材料的原子、离子或者分子的排列组合与其宏观结构和性能之间的内在联系;
2. 应用从原子和分子水平的观点来思考和解决相关的材料科学与材料化学问题;
3. 掌握表面化学与能源材料科学与工程的内在联系;
4. 培养学生资料查阅检索能力,了解本课程所涉及的各种合成方法、结构、性能在材料研究和开发中的具体应用实例;
5. 对材料设计、制备及加工过程中的实际问题采用适当的理论进行描述和分析,从而寻求解决方案
6. 了解基本分析表征材料表面性能的仪器使用方式及适用范围;
7. 了解材料科学与表面化学领域在能源研究及应用方面的最新进展。
1. Equip students with the understanding of the intrinsic link between the arrangement of atoms, ions, or molecules that make up
a material and its macrostructure and properties;
2. Allows students to learn to apply and address related material science and material chemistry issues from an atomic and
molecular level perspective;
3. Develop intrinsic links between surface chemistry and energy materials science and engineering;
4. Equip the students with the capability of searching and reading literature, to better understand the material synthesis methods,
material structures, properties and performance that associated with this course;
5. Develop the capability of applying feasible theories, models and techniques to address the actual problems during the material
synthesis, fabrication and processing;
6. Understand different characterization techniques for material analysis and their applicability in different areas;
7. Understand the latest advances of materials science and surface chemistry in energy engineering applications.
17.
课程内容及教学日 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if this is a team
teaching or module course.)
4
第一部分:能源材料化学概论(2 学时
- 能源材料基础
- 能源工程中的表界面科学问题
- 新能源材料设计思维与逻辑
Section 1: Energy materials chemistry outline (2 credit hours)
- Energy materials basics
- Surface chemistry in energy engineering
- Considerations in the design of new energy materials
第二部分:晶体学与表界面热力学基础(6 学时)
- 晶体与表面
- 缺陷及种类
- 晶体学理论
- 固体的表面张力与表面自由能
- 表面能与晶面取向
- 界面势垒
Section 2: Crystallography and surface/interface thermodynamics basics (6 credit hours)
- crystalline solids and surface
- Defects and category
- Crystalline states
- Surface tension and Gibbs free energy
- Surface energy and crystal orientation
- Interfacial barriers
第三部分:界面工程8 学时)
- -液界面
- -气界面
5
- -固界面
- 界面工程与能源应用
Section 3: Interface engineering (8 credit hours)
- Solid-liquid interface
- Solid-gas interface
- Solid-solid interface
- Interface engineering and energy applications
第四部分:表界面催化过程6 学时)
- 表界面结构与表界面反应
- 表界面电子性质
- 原子/分子与界面相互作用
- 多相催化动力学过程
- 电催化
- 光催化
Section 4: Surface/Interface catalysis (6 credit hours)
- Surface-interface structure and reaction
- Surface/interface electronic properties
- Atomic-molecular interaction at interface
- Kinetics of heterogeneous catalytic process
- Electrocatalysis
- Photocatalysis
第五部分:表界面机械过程(4 学时)
- 接触力学
- 界面摩擦学与超精密加工
- 界面中的机械化学过程
Section 5: Surface/interface mechanical process (4 credit hours)
6
- Contact mechanics
- Tribology and ultraprecision manufacturing
- Mechanochemistry at interface
第六部分:能源材料生长与改性8 时)
- 能源材料外延技术
- 晶体生长技术
- 液相沉淀法
- 固相反应
- 纳米材料
- 材料化学改性手段及能源应用
Section 6: Energy materials growth and modification (8 credit hours)
- Energy material epitaxial techniques
- Crystal materials growth techniques
- Liquid phase deposition
- Solid phase reactions
- Nanomaterials
- Materials chemical modification techniques and energy applications
第七部分:能源材料测试与分析10 学时)
- 化学和电化学性能
- 机械力学性能
- 热电与光电性能
- 光谱分析
- 质谱分析
- 显微镜分析
Section 7: Energy materials testing and analysis (10 credit hours)
7
- Chemical and electrochemical testing
- Mechanical and mechanics testing
- Thermoelectric and photoelectric properties
- Spectroscopy
- Mass spectroscopy
- Microscopy
第八部分:材料在能源领域应用(4 时)
- 可逆储氢
- 电化学储能
- 太阳能吸收与转换
- 人工光合成
- 降低能耗技术手段
Section 8: Applications of materials in energy field (4 credit hours)
- Reversible hydrogen storage
- Electrochemical energy storage
- Solar energy harvesting and conversion
- Artificial photosynthesis
- Techniques for energy saving
18.
教材及其它参考资 Textbook and Supplementary Readings
1. Physics of Surfaces and Interfaces, Harald Ibach (Springer, 2006)
2. Surfaces and Interfaces of Solids, Hans Luth (Second Edition, Springer, 1993)
3. Physical chemistry of surfaces, Adamson, Arthur W., and Alice Petry Gast. Vol. 15. New York: Interscience publishers, 1967.
4. Surface science: an introduction, Oura, Kenjiro, et al. Springer Science & Business Media, 2013.
5. 表面与界面物理 ,恽正中,王恩信,完利祥,电子科技大学出版社,1993
6. 材料成形界面工程,吴树森,严有为,化学工业出版社 2006
7. 新能源材料-基础与应用,艾德生等,化学工业出版社
8. 新能源材料,雷永泉,天津大学出版社
课程评估 ASSESSMENT
19.
评估形式
评估时间
占考试总成绩百分
违纪处罚
备注
8
Type of Assessment
Time
% of final
score
Penalty
Notes
出勤 Attendance
10
课堂表现
Class Performance
小测验
Quiz
课程项目 Projects
平时作业
Assignments
20
期中报告
Mid-Term Test
30
期末考试
Final Exam
期末报告
Final Presentation
40
其它(可根据需要
改写以上评估方
式)
Others (The above
may be modified as
necessary)
20.
记分方式 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通/不通过) Pass/Fail Grading
课程审批 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/委员会审议通过
This Course has been approved by the following person or committee of authority