5
使用 PyTorch 实现和训练神经网
络
通过反向传播计算梯度
Neural Networks
Motivating Example: Learning a
Feature Transformation
Feed-Forward Neural Networks
Training via Stochastic Gradient
Descent
Implementing and Training Neural
Nets with PyTorch
Gradient Computation via Back-
Propagation
了解如何使用 PyTorch 实现神经网络 Understand 2-layer
feedforward neural networks: include learning feature
transformations, network architecture, choice of activation
functions and training loss
Understand mini-batch training and stochastic gradient
descent
Understand the back-propagation approach to gradient
computation
Know how to implement a neural network using PyTorch
卷积和深度神经网络
例子:ImageNet 大型视觉识别挑
战
深度网络和特性层次结构
二维卷积基础知识
卷积神经网络
在 PyTorch 中创建和可视化卷积
层
训练 CNN 网络:
Backpropagation, Batch-Norm,
Dropout 等
从著名的预先培训的网络中学习
Convolutional and Deep Neural Networks
Motivation: ImageNet Large-Scale
Visual Recognition Challenge
Deep Networks and Feature
Hierarchies
2D Convolution Basics
Convolutional Neural Networks
Creating and Visualizing
Convolutional Layers in PyTorch
Training CNNs: Backpropagation,
Batch-Norm, Dropout, Etc.
Transfer Learning from Famous
Pre-Trained Networks
认识到 CNN 网络可用来学习和挖掘层次特征
二维卷积:
理解局部模式匹配
理解卷积的边界条件以及其和相关性之间的关系
知道如何使用 scipy.signal 和 PyTorch 实现卷积
卷积神经网络:
理解卷积层,稠密层,子抽样,池化理解反向传播训练
识别训练技巧,如批处理规范、辍学、数据扩充
迁移学习和预培训网络:
熟悉 AlexNet、VGG、Inception、ResNet 等著名网络,
知道如何在 PyTorch 中使用预先训练好的网络
Recognize CNNs as learning and exploiting hierarchical
features
2D convolution:
Understand as local pattern matching
Understand boundary conditions and relation between
convolution and correlation
Know how to implement convolution with scipy.signal
and PyTorch
Convolutional neural networks:
Understand convolutional layers, dense layers,
subsampling, pooling
Understand backpropagation training
Recognize training tricks like batch-norm, dropout, data
augmentation
Transfer learning and pre-trained networks:
Be familiar with AlexNet, VGG, Inception, ResNet, and
other famous networks
Know how to work with pre-trained networks in PyTorch
主成分分析
降维
主成分分析
数据可视化 PCA
通过 SVD 计算 PCA
Python 示例:特征面和基于 PCA
的分类
Principal Component Analysis
Dimensionality Reduction
Principal Component Analysis
(PCA)
PCA for Data Visualization
Computing PCA via the SVD
Python Example: Eigenfaces and
PCA-based Classification
了解特征降维的需求
将主成分分析理解为 RSS-极小化线性逼近
理解正交投影
将 PCA 理解为子空间拟合
理解数据协方差特征向量在 PCA 中的作用
了解如何使用 PoV 度量 PCA 的性能
了解如何使用 SVD 计算 PCA
了解如何将 PCA 用于数据可视化
了解 PCA 系数在监督学习任务中的应用 Recognize need
for feature dimensionality reduction
Understand PCA as RSS-minimizing linear approximation
Understand orthogonal projection
Recognize PCA as subspace fitting
Understand the role of the data-covariance eigenvectors in
PCA
Know how to measure PCA performance using PoV
Understand how to compute PCA using the SVD
Understand how PCA can be used for data visualization
Understand how the PCA coefficients can be used in
supervised learning tasks