1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联
系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
控制工程基础
Fundamentals of Control Engineering
2.
授课院系
Originating Department
机械与能源工程系
Department of Mechanical and Energy Engineering
3.
课程编号
Course Code
ME307
4.
课程学分 Credit Value
3
5.
课程类别
Course Type
专业基础课 Major Foundational Courses
6.
授课学期
Semester
春季 Spring / 秋季 Fall
7.
授课语言
Teaching Language
英文 English
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
杨再跃
机械与能源工程系
Department of Mechanical and Energy Engineering
yangzy3@sustech.edu.cn
郑裕基
机械与能源工程系
Department of Mechanical and Energy Engineering
zhengyj@sustech.edu.cn
9.
/
方式
Tutor/TA(s), Contact
黄业绪
机械与能源工程系
Department of Mechanical and Energy Engineering
huangyx3@sustech.edu.cn
10.
选课人数限额(不填)
Maximum Enrolment
Optional
2
授课方式
Delivery Method
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
学时数
Credit Hours
24
64
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
EE104 电路基础 Fundamentals of Electric Circuits
建议修读 MA201b 常微分方程 B Ordinary Differential Equation B
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
ME306 机器人基础 Fundamentals of Robotics
ME401 信号分析 Signal Analysis
14.
其它要求修读本课程的学系
Cross-listing Dept.
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
无论在工程应用还是在科学研究领域,自动控制都是必不可少的。自动控制在空间飞行器系统、机器人系统、现代制
造系统及有关温度、压力、湿度、流量等控制的工业操作系统中占着重要的组成部分。大多数工程师和科学家都熟悉自动
控制的理论和实践。今天常用的控制理论包括:经典控制理论(称传统控制理)现代控制理论和鲁棒控制理论。本课
程以经典控制理论为基础,来对控制系统进行分析与设计并进行综合处理。通过该课程的学习,为学生提供处理控制工程
法,模、控制设计如何微分传递相应表示
统;讨论如何在时域、频域、s域等方面对受控系统的性能进行评估,使学生掌握如何采取适当的控制措施来提高系统的性
能。
Automatic control is essential in any field of engineering and science. Automatic control is an important
and integral part of space-vehicle systems, robotic systems, modern manufacturing systems, and any
industrial operations involving control of temperature, pressure, humidity, flow, etc. It is desirable that
most engineers and scientists are familiar with theory and practice of automatic control. Control theories
commonly used today are classical control theory (also called conventional control theory), modern control
theory, and robust control theory. This course presents comprehensive treatments of the analysis and design
of control systems based on the classical control theory. It provides students a general method in control
engineering including modeling, analysis, and design of control systems. It illustrates how to represent a
control system by a set of differential equation, transfer function, and the corresponding block diagram.
The course discusses how to evaluate performance of a controlled system in the time domain, the frequency
domain, the s-domain, how to take appropriate control actions to improve the system performance.
16.
预达学习成果 Learning Outcomes
握控了解际控
能,为后期课程的学习提供必要的背景知识。
After completing this course, the students should know well the basic concepts and principles of control
engineering, develop problem-solving skills for applications in different engineering disciplines, and
provide essential background for more advanced studies.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
3
课程内容(学时)Course Contents(Credit Hours)
第一章 控制系统介绍
Chapter 1 Introduction to Control Systems
1-1 引言
1–1 Introduction
1–2 控制系统实例
1–2 Examples of Control Systems
1–3 开环控制与闭环控制
1–3 Closed-Loop Control Versus Open-Loop Control
第二章 控制系统的数学模型
Chapter 2 Mathematical Modeling of Control Systems
2–1 概述
2–1 Introduction
2–2 机械系统的数学模型
2–2 Mathematical Modeling of Mechanical Systems
2–3 电气系统的数学模型
2–3 Mathematical Modeling of Electrical Systems
2–4 传递函数和脉冲响应函数
2–4 Transfer Function and Impulse-Response Function
2–5 其它建模方法
2–5 Additional techniques for modelling
2–6 MATLAB 进行系统数学模型之间的相互转换(实验)
2–6 Transformation of Mathematical Models with MATLABLab
第三章 控制系统的时域分析
Chapter 3 Time-domain Analysis of Control Systems
3–1 概述
3–1 Introduction
3–2 一阶系统
3–2 First-Order Systems
3–3 二阶系统
3–3 Second-Order Systems
3–4 高阶系统
3–4 Higher-Order Systems
3–5 劳斯稳定判据
3–5 Routh’s Stability Criterion
3–6 积分环节和微分环节对控制系统性能的影响
3–6 Effects of Integral and Derivative Control Actions on System Performance
3–7 单位反馈控制系统的稳态误差
3–7 Steady-State Errors in Unity-Feedback Control Systems
3–8 MATLAB 进行系统的瞬态响应和稳态误差分析(实验)
4
3–8 Transient-Response and Steady-State Errors Analysis with MATLABLab
第四章 控制系统的根轨迹法
Chapter 4 Control Systems Analysis and Design by the Root-Locus Method
4–1 概述
4–1 Introduction
4–2 根轨迹图
4–2 Root-Locus Plots
4–3 反馈系统的根轨迹图
4–3 Root-Locus Plots of Feedback Systems
4–4 根轨迹法探讨控制系统的设计
4–4 Root-Locus Approach to Control-Systems Design
4–5 根轨迹实例和解决办法
4–5 Example Problems and Solutions
4–6 MATLAB 绘制根轨迹图(实验
4–6 Plotting Root Loci with MATLABLab
第五章 控制系统的频域分析
Chapter 5 Control Systems Analysis and Design by the Frequency-Response Method
5–1 概述
5–1 Introduction
5–2 伯德图
5–2 Bode Diagrams
5–3 极坐标图(乃氏图)
5–3 Polar Plots
5–4 典型环节的对数幅频与相频曲线
5–4 Log-Magnitude-versus-Phase Plots
5–5 乃奎斯特稳定判据
5–5 Nyquist Stability Criterion
5–6 频域系统的稳定性分析
5–6 Stability Analysis
5–7 相对稳定性分析
5–7 Relative Stability Analysis
5–8 单位反馈闭环控制系统的频率响应
5–8 Closed-Loop Frequency Response of Unity-Feedback Systems
5–9 用频率响应进行控制系统的设计探讨
5–9 Control Systems Design by Frequency-Response Approach
5–10 用实验进行确定控制系统的传递函数(实验
5–10 Experimental Determination of Transfer FunctionsLab
第六章 控制系统的校正方法
Chapter 6 Design and Compensation of Control Systems