课程大纲
COURSE SYLLABUS
1.
课程代码/名称
Course Code/Title
MAT8029 应用数学方
MAT8029 Methods of Applied Math
2.
课程性质
Compulsory/Elective
必修 Compulsory
3.
课程学分/学时
Course Credit/Hours
3 学分/48 学时
4.
授课语
Teaching Language
英文
English
5.
授课教
Instructor(s)
张振
6.
是否面向本科生开放
Open to undergraduates
or not
7.
先修要
Pre-requisites
MA201a 常微分方程 a,MA303 偏微分方程
Ordinary and Partial Differential Equations
8.
教学目
Course Objectives
掌握计算和应用数学模型建立和分析的基本方法
Master the basic methods of modelling and analysis in computational and
applied mathematics
9.
教学方
Teaching Methods
专题性质授课,并辅以前沿课题应用
Teaching in topics, and application to cutting edge problems
10.
教学内
Course Contents
(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the
difference.)
Section 1
Perturbation methods for algebraic equations:
i) Regular perturbation
ii) Singular perturbation
iii) Non-integer powers
iv) Logarithms
v) Eigenvalue problems
Section 2
Local analysis for the solutions to ODEs
i) Series solutions to ODEs
ii) Types of points of homogeneous linear ODEs
iii) Frobenius methods
iv) Method of dominant balance
Section 3
Asymptotic expansions
i) Asymptotic sequences
ii) Asymptotic power series
iii) Properties of asymptotic series
iv) Asymptotic series vs. convergent series
v) Other asymptotic expansions
Section 4
Asymptotic expansion of integrals
i) Direct expansion of integrands
ii) Integration by parts
iii) Laplace’s method
iv) Method of stationary phase
v) Method of steepest descent
Section 5
Introduction to global analysis and perturbation methods
i) Example of perturbation method
ii) Asymptotic expansion in \epsilon
iii) An example with direct expansion
iv) Regular vs. singular perturbation problems
Section 6
Boundary layer theory
i) Boundary layer problems
v) Boundary layer theory
vi) Location of boundary layer
vii) Higher order boundary layer theory
viii) Boundary layer thickness and distinguished limit
ix) Boundary layer problem including logarithm term
x) Multiple boundary layers
xi) Internal boundary layer
xii) Boundary layer in PDE problem
Section 7
WKB theory
i) Introduction
ii) WKB theory
iii) More remarks on the asymptotic expansions
iv) Problems with turning points
v) Eigenvalue problems (Storm-Liville problem)
vi) Application to wave equations
vii) Inhomogeneous linear equations
Section 8
Multiple scale analysis
i) Secular terms
ii) Method of strained coordinates
iii) Multiple scale analysis
iv) Slowly varying coefficients
v) Method of averaging
Section 9
Homogenization method
i) Background
ii) 1D problem
iii) Multi-dimensional problems
iv) Porous medium flow Darcy’s law
Section 10
Bifurcation and stability
i) Linearized stability of steady states
ii) Limit cycle and Hopf bifurcation
iii) System of ODEs
Section 11
Basic calculus of variation
i) Introductory example geodesic on a sphere
ii) First variation: Euler-Lagrange equation
iii) Isoperimetric problems Catenary problem
iv) Holonomic constraints: Lagrange multipliers
v) Free boundary problems natural boundary condition
vi) Hamilton-Jacobi system
vii) Noether’s theorem*
viii) Second variation*
Section 12
From calculus of variation to optimal control theory: an
introduction*
i) Basic formulation
ii) Pontryagin’s maximum principle
iii)
Dynamical programming and Hamilton-Jacobi-Bellman
equation
iv) Linear quadratic regulator
11.
课程考
Course Assessment
平时作业(35%+出勤(5%+闭卷期中考试(20%+闭卷期末考试(40%
assignments (35%), attendance (5%), closed-book midterm exam (20%) and final
exam (40%)
12.
教材及其它参考资料
Textbook and Supplementary Readings
1*. (Textbook) C. M. Bender and S. A. Orszag, Advanced mathematical methods for
scientists and engineers, Springer, 1999.
2*. M. H. Holmes, Introduction to perturbation methods, Springer-Verlag, 1995.
3*. A. W. Bush, Perturbation methods for engineers and scientists, Boca Raton, 1992.
4*. E. J. Hinch, Perburbation methods, Cambridge University Press, 1991.
5^. A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic analysis for periodic
structures, North-Holland, Oxford, 1978.
6^. U. Hornung, Homogenization and porous media, Springer, 1997.
7^. G. A. Pavliotis, A. M. Stuart, Multiscale methods: averaging and homogenization,
Springer, 2008.
8#. Bruce van Brunt, The Calculus of Variations, Springer-Verlag, 2004.
9#. 张恭庆,变分学讲义,高等教育出版社,2011.
10#. M. Giaquinta and S. Hildebrandt, Calculus of Variations, Vol. I and II, Springer,
1996.
11#. Daniel Liberzon, Calculus of Variations and Optimal Control Theory, Princeton
University Press, 2012.
The books with * are standard textbook about perturbation methods; books with ^
concerns mathematical homogenization methods; books with # discuss calculus of
variations.