Basic calculus of variation
i) Introductory example – geodesic on a sphere
ii) First variation: Euler-Lagrange equation
iii) Isoperimetric problems – Catenary problem
iv) Holonomic constraints: Lagrange multipliers
v) Free boundary problems – natural boundary condition
vi) Hamilton-Jacobi system
vii) Noether’s theorem*
viii) Second variation*
From calculus of variation to optimal control theory: an
introduction*
i) Basic formulation
ii) Pontryagin’s maximum principle
iii)
Dynamical programming and Hamilton-Jacobi-Bellman
equation
iv) Linear quadratic regulator
1*. (Textbook) C. M. Bender and S. A. Orszag, Advanced mathematical methods for
scientists and engineers, Springer, 1999.
2*. M. H. Holmes, Introduction to perturbation methods, Springer-Verlag, 1995.
3*. A. W. Bush, Perturbation methods for engineers and scientists, Boca Raton, 1992.
4*. E. J. Hinch, Perburbation methods, Cambridge University Press, 1991.
5^. A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic analysis for periodic
structures, North-Holland, Oxford, 1978.
6^. U. Hornung, Homogenization and porous media, Springer, 1997.
7^. G. A. Pavliotis, A. M. Stuart, Multiscale methods: averaging and homogenization,
Springer, 2008.
8#. Bruce van Brunt, The Calculus of Variations, Springer-Verlag, 2004.
9#. 张恭庆,变分学讲义,高等教育出版社,2011.
10#. M. Giaquinta and S. Hildebrandt, Calculus of Variations, Vol. I and II, Springer,
1996.
11#. Daniel Liberzon, Calculus of Variations and Optimal Control Theory, Princeton