MAT8022 组合数学 Combinatorics
课程学分/学时
Course Credit/Hours
中英文(
Chinese and English
)
,
英文教材
向青教授, 李才恒教授
Qing Xiang, Professor; Caiheng Li, Professor
是否面向本科生开放
Open to
undergraduates
or not
MA103b 线性代数 I & II,MA214 抽象代数
MA103b Linear Algebra, MA214 Abstract Algebra
组合数学是一门由众多分支组成的学科,包括组合计数和组合机构,比如图论,有限几何,编码
和密码学,组合设计。本课程将根据学生和教师的兴趣选择侧重点。其目标是让学生了解和掌握组
合数学的基础理论,基本方法,重要例子以及主要结果培养学生在组合数学领域初步的科研能力
。
Combinatorics consists of various branches, including combinatorial enumerations and structures, graph theory,
finite geometry, block designs, codes and cryptography. This course will choose some of these topics according
to the research interests of students and the lecturer in each semester. The aim is to provide students chances
to understand fundamental theory, important examples and main results, and can use combinatorial methods
in the future study and research.
组合计数将包括重要而基本的组合方法,比如用两种方法计数,递归关系,生成
函数,容斥原理,及在分类和分化中的应用。
Combinatorial Counting and Enumeration will cover fundamental methods, such as,
counting in two ways, recurrence relations, and generating functions, the principle of
inclusion and exclusion, and applications to typical objects like distributions and
partitions.
图论将覆盖多个重要课题,像 Hamiltonian 圈,图核,图的染色,图的因子分解,
极值图论。
Graph Theory will cover most fundamental topics such as Hamiltonian cycles, graph
minors, graph colouring, graph factorizations, and extremal graph theory.
有限几何部分将覆盖重要的几何对象和设计,包括线性空间,射影空间,放射空
间,对距空间,对称设计, t-设计。
Finite Geometry will cover important objects, such as Linear Spaces, Projective Spaces,