2. 完全掌握四种基本的收敛定理(单调收敛定理,Fatou 引理,控制收敛定理,有界收敛定理),
并且可以在许多重要的问题上运用他们。
3. 清晰地理解几种不同收敛概念(几乎处处收敛,依概率收敛,Lp 收敛,弱收敛)的概率意义、
区别以及关系,并且可以在许多不同的问题上运用他们
4. 完全掌握条件期望、条件概率的概念,提高在实际问题中使用“条件期望”的能力
5. 清晰地理解与掌握鞅的基本概念,包括存在性、唯一性、性质与应用、超鞅与半鞅,能够在随机过程、随
即分析与金融数学中运用鞅方法。
Section 1: Independence, Expectation and Convergence (15h): Borel-Cantelli Lemma, Convergence
Theorems, Jensen’ s Inequality for Convex Functions, The Schwarz Inequality, Orthogonal Projection,
Holder from Jensen; Convergence in Probability, Weak Convergence, Convergence in Distributions,
Characteristic Functions.
Section 2: Conditional probability and conditional expectation (3h): Definition of conditional
expectation and conditional probability, Existence & Uniqueness, Properties of conditional expectation and
conditional probability, Tower Property, Some Important Inequalities.
Section 3: Martingales (12h): Definition of martingales, Properties of martingales, Super-martingales, Sub-
martingales, Examples, Convergence of martingales, Stopping times, Optional Sampling Theorem.
Section 4: Super-martingales and Sub-martingales (8h): Definitions and Properties of Super-martingales
and Sub-martingales, Examples, Doob Decomposition. Convergence of martingales, Stopping times,
Optional Sampling Theorem.
Section 5: Martingale Inequality and Martingale Convergence Theorems (8h): Uniform Integrability;
UI Martingales; Martingale Convergence Theorems; Backwards Martingale Convergence Theorems; Strong
Law of Large Numbers; Martingale Central Limit Theorem.
Section 6:Brownian motion: Basic properties. (2h)
Textbook: Jean Jacod & Philip Protter,《Probability Essentials》,Springer-Verlag, Berlin Heidelberg.
Supplementary Readings:
1. David Williams, ,《Probability with Martingales》,Cambridge University Press, Cambridge, 1991.
2. 严士健,王隽骧,刘秀芳,《概率论基础》,科学出版社