Section 1. Examples and basic concepts.
1.1 The notion of a dynamical system (1h)
1.2 Circle rotations (1h)
1.3 Expanding endomorphisms of the circle (2h)
1.4 Shifts and subshifts (2h)
1.5 Quadratic maps (1h)
1.6 The Gauss transformation (1h)
1.7 Hyperbolic toral automorphisms (2h)
1.8 The horseshoe (2h)
1.9 Chaos and Lyapunov exponents (2h)
1.10 Attractors: the solenoid, the Lorenz attractor, the Hénon map (3h)
2. Topological dynamics
2.1. Limit sets and recurrence (2h)
2.2 Topological transitivity and topological mixing (2h)
2.3. Expansiveness (1h)
2.4. Topological entropy. Examples (5h)
2.5. Equicontinuity, distality, proximality (2h)
3. Symbolic dynamics
3.1. Subshifts and codes (1h)
3.2. Subshifts of finite type (1h)
3.3. Topics in symbolic dynamics (4h)
4. Hyperbolic dynamics
4.1 Brief introduction on surfaces manifolds and differentiability (2h)
4.2. Hyperbolic sets (2h)
4.3. Pseudo orbits and shadowing property (2h)
4.4. Stable manifold theorem (4h)
4.5. Topics in hyperbolic dynamics (2h)