1.
课程代码/名称
Course Code/Title
MAT7101
MAT7101 Generalized Linear Models
2.
专业选修课 Major Elective Courses
3.
课程学分/学时
Course Credit/Hours
3/48
4.
英文 English
5.
陈欣 CHEN Xin
6.
Open to undergraduates
是 Open to undergraduates
7.
Pre-requisites
(如面向本科生开放,请注明区分内容。
undergraduates, please indicate the difference.)
统计线性模型(MA329) Statistical Linear Models(MA329)
本课 3 学分,3 学时/每周。 先修课程: 统计线性模型(MA329)。广义线性模型是经典线性模型的自然推广。 广义
线性模型涵盖了作为特例线性回归模型、二项响应变量的 logit 模型和 probit 模型。广义线性模型可应用于多种多样
的学科领域。在经典线性模型的假设无效时,应考虑使用这一类模型。
This course introduces generalized linear models which are a natural generalization of cla
mo
dels. They include as special cases linear regression model, logit and probit models for binomial
responses, and multinomial response models. Genera
lized linear models are applicable in a wide variety
of subject areas, and should be considered whenever t
he assumptions of the classical linear model are
invalid.
讲授 Lectures
通论(
学时)
General Theory of GLIM (9 class hours)
用于二进制数据(
学时)
GLIM for binary data (9 class hours)
用于均值与方差成比例的数据(
学时)
GLIM for data with mean proportional to variance (9 class hours)
用于具有恒定变异系数的数据(
个课时)
GLIM for data with constant coefficient of variation (9 class hours)
多变量数据的
(
学时)
Multivariate GLIM for polytomous data (9 class hours)
拟似然和估计方程(
学时)
Quasi-likelihood and Estimating Equations (3 class hours)