课程大纲
COURSE SYLLABUS
1.
课程代码/名称
Course Code/Title
MAT7096
金融衍生品定价模型与计
Models and computational
methods for pricing Financial Derivatives
2.
课程性质
Compulsory/Elective
选修 Elective
3.
课程学分/学时
Course Credit/Hours
3/48
4.
授课语
Teaching Language
中英文
Chinese and English
5.
授课教
Instructor(s)
曾萍萍 助理教授
6.
是否面向本科生开放
Open to undergraduates
or not
No
7.
先修要
Pre-requisites
If the course is open to
undergraduates, please indicate the difference.)
Probability and Statistics.
Better to have finished these two courses
:(1)
Partial
Differential Equations (2)应用随机过 Applied Stochastic Processes
8.
教学目
Course Objectives
If the course is open to undergraduates, please indicate the
difference.)
本课程将介绍一些著名的金融数学模型,基本定价原理和各种各样的方法对金融衍生品(包括
种路径依赖期权,比如亚式期权和百慕大期权等)定价。
This course will introduce some popular mathematical models, pricing theories and various
computational methods for pricing financial derivatives (including various path dependent options, like
Asian options and Bermudan options, etc).
9.
教学方
Teaching Methods
If the course is open to undergraduates, please indicate the
difference.)
上课+讨论+课题 lectures + discussion + projects
10.
教学内
Course Contents
(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the
difference.)
Section 1
基本金融衍生品简介 Introduction to Financial Derivatives
Section 2
离散二叉树模型
(1)
论,风险中性定价理论, 欧式期权等。
(2)
式期权和美式期权定价。
Discrete-time binomial model
(1) The one period model, this part includes model
description, portfolios and no arbitrage, risk neutral
valuation, European options, etc.
(2) The multiperiod model, this part covers conditional
expectation and discrete-time martingale, pricing
European options and American options.
Section 3
随机过程在金融中的应用
介绍布朗运动及其他相关随机过程,鞅理论,随机分析,
伊藤公式,
Girsanov’s Theorem
等。
Financial applications of stochastic processes
Introduce Brownian Motion and related processes,
martingales, stochastic calculus, the Ito’s formula, Girsanov’s
Theorem, etc.
Section 4
Black-Scholes-Merton
模型下的期权定价
Black-Scholes-Merton 模型,风险中性定价,波动率,
价关系,希腊字母,Delta Gamma 对冲.
Options pricing under the Black-Scholes-Merton model
The Black-Scholes-Merton model, risk neutral valuation,
volatility, parity relations, the Greeks, Delta and Gamma
hedging.
Section 5
隐含波动率
Volatility smile
Section 6
对路径依赖期权定价
介绍各种数值方法对障碍期权、亚式期权、回望期权、百
慕大期权、美式期权等定价。
Pricing path dependent options
This section introduces various methods for pricing barrier
optionsAsian optionslookback optionsBermudan
options and American options, etc.
Section 7
随机波动率模型下的期权定价
Options pricing under stochastic volatility models
Section 8
Section 9
Section 10
………
11.
课程考
Course Assessment
1
Form of examination;
2
. grading policy
3
If the course is open to undergraduates, please indicate the difference.)
期中考试 Midterm 30% 作业 Homework 15% 课题 Project 15%
期末考试 Final exam40%
12.
教材及其它参考资料
Textbook and Supplementary Readings
参考教材
Textbook
Mathematical Models of Financial Derivatives (2rd Edition), Yue-Kuen Kwok, Springer, 2008.
Options, Futures, and Other Derivatives (9th Edition), John.C.Hull, 2014, ISBN-10: 0-13-345631-5,
ISBN-13: 978-0-13-345631-8.
A course in Financial Calculus, Alison Etheridge, 2002.
Introduction to the Economics and Mathematics of Financial Markets, Jaksa Cvitanic, Fernando
Zapatero, 2004
其他参考资 Supplementary Readings
Stochastic Calculus for Finance I: The Binomial Asset Pricing Model, Steven E. Shreve, Springer,2004
Stochastic Calculus for Finance II: Continuous-Time Models, Steven E. Shreve, Springer, 2004.