Integrable Martingales; Brownian Motion.
伊藤积分:伊藤积分的构造;变量替换公式;鞅表示定理; Girsanov
定理。
Ito Integrals: Construction of the Stochastic Integral; The Change-of-
Variable Formula; Representations of Continuous Martingales in Terms of
Brownian Motion; The Girsanov Theorem.
随机 微 分 方 程 : 強 解 ; 弱 解 ; 強 解 的 存 在 唯 一 性 ; 线 性 方 程 ;
Feynman-Kac 公式。
Stochastic Differential Equations: Strong Solutions; Weak Solutions;
Existence and Uniqueness of Strong Solutions; Linear Equations;
Feynman-Kac Formula.
倒向随机微分方程:适应解的定义;适应解的存在唯一性;线性方
程。
Backward Stochastic Differential Equations: Definition of an Adapted
Solution; Existence and Uniqueness of Adapted Solutions; Linear
Equations.
10%考勤 + 30%期中测试 + 60%期末测试
10% Attendance + 30% midterm exam + 60% final exam
教材及其它参考资料
Textbook and Supplementary Readings
1. I. Karatzas and S.E. Shreve. Brownian Motion and Stochastic Calculus, 2
nd
ed., Springer-Verlag, New
York, 1998.
2. J. Yong and X. Y. Zhou. Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer-
Verlag, New York, 1999.
3. D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3
rd
ed., Springer-Verlag, New
York, 1999.
4. N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes, North-Holland
Publishing Company, New York, 1981.