课程大纲
COURSE SYLLABUS
1.
课程代码/名称
Course Code/Title
MAT7092 随机过 Stochastic Processes
2.
课程性质
Compulsory/Elective
专业课 Elective
3.
课程学分/学时
Course Credit/Hours
3/48
4.
授课语
Teaching Language
中英双语 Chinese/English
5.
授课教
Instructor(s)
温家强,助理教授,数学系
慧园 3 404 (答疑时间:周三下午 3-6 )
wenjq@sustech.edu.cn
WEN Jiaqiang, Assistant Professor, Department of Mathematics
Rm. 404, Huiyuan 3 Bldg. (Office hours: Wednesday 3-6 pm)
6.
是否面向本科生开放
Open to undergraduates
or not
YES
7.
先修要
Pre-requisites
If the course is open to
undergraduates, please indicate the difference.)
MA215 概率论 Probability Theories
8.
教学目
Course Objectives
If the course is open to undergraduates, please indicate the
difference.)
随机过程作为概率论的一个重要分支,它是研究随机现象随时间变化规律性的数学工具,是随机
系列课程的重要组成分。它来源于实际,具有深刻的应用背景,它可广泛应用于金融学、经济与
理科学、信息科学、物科学、计算机科学以及其他工程技术领域。随机过程本身也是今后学习随
分析和数理金融的重要基础
本课程将从概率论的基本概念开始,包括随机变量,数学期望和极限定理;然后,将依次介绍泊
松过程、更新理论、散时间马尔科夫链、连续时间马尔科夫链、鞅的概念和布朗运动与其他马尔
夫过程。
学习程后应了掌握过程概念论; 掌握望的其性
质,掌握泊松过程的种等价定义,掌握更新过程和极限定理,能够熟练的判断每个离散时间马尔
夫链的类型,能根据际问题分析连续时间马尔科夫链的齐次性和马氏性,掌握鞅和停时的定义以
收敛定理,掌握布朗运动的定义和简单性质,了解其他马尔科夫过程的定义和相关概念
As an important branch of probability theory, random process is a mathematical tool for studying the
regularity of random phenomena over time, and an important part of the random series of courses. It comes
from reality and has a profound application background. It can be widely used in finance, economics and
management science, information science, biological science, computer science and other engineering
technology fields. The stochastic process itself is also an important foundation for studying stochastic analysis
and mathematical finance in the future.
This course will start with the basic concepts of probability theory, including random variables,
mathematical expectations and limit theorems; then, it will introduce the concepts of Poisson process, update
theory, discrete-time Markov chain, continuous-time Markov chain, and martingale in turn And Brownian
motion and other Markov processes.
After completing this course, students should understand and master the basic concepts and conclusions
of stochastic processes; master the definition and nature of conditional expectations, master several equivalent
definitions of Poisson processes, master the update process and limit theorem, and be able to make judgments
proficiently Each type of discrete-time Markov chain can analyse the homogeneity and Markov property of
continuous-time Markov chain according to actual problems, grasp the definition of martingale and stopping
time and the convergence theorem, and grasp the definition and simple properties of Brownian motion ,
Understand the definitions and related concepts of other Markov processes.
9.
教学方
Teaching Methods
If the course is open to undergraduates, please indicate the
difference.)
理论课程,课堂讲授为主
Theoretical courses, mainly in teaching
10.
教学内
Course Contents
(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the
difference.)
Section 1 4 hours
理、随机过程
Introduction: probability, examples of random variables, mathematical
expectations, characteristic functions and probability limit theorems, random
processes
Section 2 8 hours
Poisson 过程:计数过程和泊松过程、泊松流、复合泊松过程、条件泊松
过程
Poisson process: counting process and Poisson process, Poisson flow,
compound Poisson process, conditional Poisson process
Section 3 8 hours
N(t)
程、更新报酬过程、再现过程、平稳点过
Renewal theory: distribution of N(t), limit theorem, renewal theorem and its
application, delayed renewal process, renewal reward process, recurrence
process, stable point process
Section 4 8 hours
Markov Chapman-Kolmogorov
K-C 定理赌徒
Markov 链的应用、时间可逆的 Markov 链、半 Markov 过程
Discrete-time Markov chain: Markov chain and its transition probability,
Chapman-Kolmogorov equation, KC equation, limit theorem, transfer between
classes and gambler bankruptcy problems, branching process, Markov chain
application, time reversible Markov chain, semi-Markov process
Section 5 8 hours
Markov
Kolmogorov
应用、一致化
Continuous-time Markov chain: continuous-time Markov chain, Poisson
process is Markov chain, birth and death process, Kolmogorov differential
equation, limit probability, time reversibility, reverse chain Application of
queuing theory, unification
Section 6 4 hours
Azuma 广
Azuma 不等
Section 7 8 hours
Brown Markov 过程:布朗运动、质、
Markov 散粒噪声过程、平稳过程
Brownian motion and other Markov processes: Brownian motion, simple
properties of Brownian motion, drifting Brownian motion, backward and
forward diffusion process, Brownian bridge and empirical process, limit
distribution, Markov shot noise process, stationary process
11.
课程考
Course Assessment
1
Form of examination
2
. grading policy
3
If the course is open to undergraduates, please indicate the difference.)
平时作业 Assignments 25%
期中考试 Mid-Term Test 25%
期末考试 Final Exam 50%
12.
教材及其它参考资料
Textbook and Supplementary Readings
1. Stochastic Processes, 2th edition, Sheldon M.
2. 随机过程,何书元,编著