Course Contents
(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the
difference.)
Section 1
凸集和凸函数的基本性质
Convex Sets and Functions
预备知识的介绍,数学分析实数理论,线性空间理论,几何知识初
步
Preliminaries, Basic knowledge of real number theory, linear space and
geometry
凸集的定义与性质、凸函数的定义与性质、保凸运算、凸集的相对
内部、凸分离、距离函数
Convex sets and convex functions, Operations that preserve convexity,
Relative interiors of convex sets, Convex separation, The distance
function
Section 3
次微分的运算
Subdifferential Calculus
集合收敛、法锥与切锥、集值映射、映射的 coderivative 算子、次梯
度及其基本运算法则、最优值函数与支撑函数的次梯度、
Fenchel
共
轭、对偶理论
Convex separation, Normals and tangents sets, Set-valued mappings and
the coderivative operator, Subgradients and basic calculus rules,
Subgradients of optimal value functions and support functions, Fenchel
conjugates, Dualization
Section 4
一些基于凸性的著名结果与
变分性质简介
Remarkable Consequences of
Convexity and introduction to
variational principle
可微性的刻画、Carathéodory 定理和 Farkas 引理、Radon 定理和
Helly 定理、中值定理、极小时间函数的 Minkowski 度规、极小时间
函数的次梯度、极值原理、变分原理
Characterizations of differentiability, Carathéodory theorem and Farkas
theorem , Radon theorem and Helly theorem, Mean value theorem,
Minimal time function and Minikowski gauge, Subgradients of minimal
time functions, Extremal principle, Variational principles
Section 5
(凸分析)在最优化和选址
问题中的应用、非光滑优化
初步
Applications to Optimization
and Location Problems,
Nondifferentiable
Optimization
优化问题入门、下半连续性和极小值点的存在性、最优性条件、
Fermat-Torricelli
问题、广义
Sylvester
问题简介、广义
KKT
系统
Subgradients of minimal time functions, Introduction to optimization,
Lower semicontinuity and existence of minimizers Optimality conditions,
The Fermat-Torricelli problem, A generalized Sylvester problem,
Generalized KKT form.
(
○
1
考核形式 Form of examination;
○
2
.分数构成 grading policy;
○
3
如面向本科生开放,请注明区分内容。
If the course is open to undergraduates, please indicate the difference.)
小测验、平时作业(30%),期中考试(20%),期末考试(50%)
Quiz, Assignments (30%), Mid-Term Test (20%), Final Exam (50%)
教材及其它参考资料
Textbook and Supplementary Readings