有限差分法(3 学时)
Finite Difference Methods (3-hour lectures)
黎曼问题和有限体积法(5 学时)
Riemann Problems and Finite Volume Methods (5-hour lectures)
高分辨率格式与限制器(3 学时)
High-Resolution Schemes and Limiters (3-hour lectures)
ENO 和 WENO 格式(3 学时)
ENO and WENO Schemes (3-hour lectures)
间断 Galerkin 方法(4 学时)
Discontinuous Galerkin Methods (4-hour lectures)
高阶时间离散(3 学时)
High-Order Time Discretization (3-hour lectures)
机器学习简介(2 学时)
Introduction to Machine Learning (2-hour lectures)
深度神经网络(4 学时)
Deep Neural Network (4-hour lectures)
深度学习与数据驱动方法(4 学时)
Machine Learning and Data-Driven Methods (4-hour lectures)
计算流体力学中的深度学习方法(4 学时)
Deep Learning Methods in Computational Fluid Dynamics (4-hour lectures)
物理信息神经网络与数据驱动建模(3 学时)
Physics-Informed Neural Network and Data-Driven Modeling (3-hour
lectures)
多维流体力学系统及其方法(6 学时)
Multidimensional Fluid Dynamic Systems and Methods (6-hour lectures)
(
○
1
考核形式 Form of examination;
○
2
.分数构成 grading policy;
○
3
如面向本科生开放,请注明区分内容。
If the course is open to undergraduates, please indicate the difference.)
作业(50%)+期末考试(50%)
Assignment (50%) + Final Exam (50%)
教材及其它参考资料
Textbook and Supplementary Readings
1. Eleuterio F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical
Introduction. Springer Science & Business Media, 2013.
2. Jan S. Hesthaven, Numerical Methods for Conservation Laws: From Analysis to Algorithms, Society
for Industrial and Applied Mathematics, 2017.
3. Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, The MIT Press, Cambridge,
MA, USA, 2016.
4. Ke-Lin Du and Madisetti NS Swamy, Neural Networks and Statistical Learning, Springer Science &