教学内容
Course Contents
(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the
difference.)
非光滑函数的极小化、图像处理和数据科学中的应用、鞍点公式
Minima of non-smooth functions, Applications in image processing,
Applications in the data sciences, Saddle-point formulations
Section 2
凸分析-次微分
Convex analysis
-subdifferentials
凸性和(凸)函数的性质、次微分的定义以及简单例子、次微分集的
性质、方向导数、次微分计算、最优性条件
Convexity and properties of (convex) functions,
Subdifferentials and examples, Properties of the subdifferential set,
Directional derivatives, Computing Subgradients, Optimality conditions
Section 3
共轭函数
Conjugate functions
共轭函数与双共轭函数、共轭算子的运算法则和例子、卷积下确界、
共轭函数的次微分
Conjugate functions and the biconjugate,
Conjugate calculus rules and examples,
Infimal convolution and subdifferentials of conjugate functions
Section 4
光滑性与强凸性
Smoothness and strong
convexity
Lipschitz
光滑性、强凸性、光滑性与强凸性的联系
smooth functions, Strongly convexity,
Smoothness and strong convexity correspondence
Section 5
近端算子
The proximal operator
近端算子的存在性与唯一性、近端算子的例子、近端算子的运算法
则、指示函数的近端算子、投影、Prox 第二定理、Moreau 包络
Existence, uniqueness and examples of the proximal operator,
Prox calculus rules, Prox of indicators—orthogonal projections,
The second prox theorem, The Mreau envelope,
Prox of indicators—orthogonal projections,
The second prox theorem, the Mreau envelope
Section 6
近端梯度算法和块近端梯
度算法
The proximal gradient
method and the block
proximal gradient method
近端梯度算法简介、不同设定下的近端梯度算法的收敛性分析、循环
块近端梯度算法、随机块近端梯度算法
The proximal gradient method,
Convergence analysis of the proximal gradient method,
The cyclic block proximal gradient method,
The randomized block proximal gradient method