课程大纲
COURSE SYLLABUS
1.
课程代码/名称
Course Code/Title
MAT7076 代数曲线 Algebraic Curves
2.
课程性质
Compulsory/Elective
选修 Elective
3.
课程学分/学时
Course Credit/Hours
3 学分/48 学时
4.
授课语
Teaching Language
英文 English
5.
授课教
Instructor(s)
胡勇 Hu Yong
6.
是否面向本科生开放
Open to undergraduates
or not
Yes
7.
先修要
Pre-requisites
If the course is open to
undergraduates, please indicate the difference.)
MA323 拓扑学 Topology, MAT8020 抽象代数 II Abstract Algebra II
8.
教学目
Course Objectives
If the course is open to undergraduates, please indicate the
difference.)
介绍代数几何的基本概念和基本研究方法和工具。引入层的上同调,详细讲述代数曲线,特别是平面代
曲线的基本知识。如有时间,还计划讲述与黎曼曲面之间的联系。
The course will introduce basic concepts and fundamental methods and tools in algebraic geometry. Main
topics covered include sheaves and their cohomology and basic theory of algebraic curves, especially
plane algebraic curves. If time permits, we will also talk about relationship with the theory of
Riemann surfaces.
9.
教学方
Teaching Methods
If the course is open to undergraduates, please indicate the
difference.)
理论课程,课堂讲授为主。
This is a theoretical course, taught by classroom lectures.
10.
教学内
Course Contents
(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the
difference.)
Section 1
仿射代数集 Affine algebraic sets
Section 2
射影代数集 Projective algebraic sets
Section 3
层论 Sheaf theory
Section 4
代数簇 Algebraic varieties
Section 5
维数理论 Dimension theory
Section 6
切空间和奇点 Tangent spaces and singular points
Section 7
层的上同调 Cohomology of sheaves
Section 8
亏格与 Riemann-Roch 定理 Genus and Riemann-Roch theorem
Section 9
有理映射 Rational maps
Section 10
几何亏格 Geometric genus
Section 11
有理曲线 Rational curves
Section 12
其他专题 Other topics
………
11.
课程考
Course Assessment
1
Form of examination
2
. grading policy
3
If the course is open to undergraduates, please indicate the difference.)
(1) 考试,十三级等级记分制;Written exam, letter grading
(2) 分数构成: 平时作业 20%;课程报告 30%;期中考试:20%,期末考试:30%
Grading policy: homework 20%; project/presentation 30%; midterm 20%, final exam: 30%
12.
教材及其它参考资料
Textbook and Supplementary Readings
教材 Textbook:
教师自编讲义 Lecture notes by the instructor
其他参考资料 Supplementary readings:
Daniel Perrin, Algebraic Geometry: an introduction, Springer, 2008, ISBN: 978-1-84800-055-1 e-ISBN: 978-
1-84800-056-8
W. Fulton, Algebraic curves: an introduction to algebraic geometry, ISBN: 201510103, 9780201510102,
online version available at http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf