课程大纲
COURSE SYLLABUS
1.
课程代码/名称
Course Code/Title
MAT7065 多复变与复几何 Several Complex Variables and Complex
Geometry
2.
课程性质
Compulsory/Elective
专业选修/Elective
3.
课程学分/学时
Course Credit/Hours
3/48
4.
授课语
Teaching Language
中英双语/English and Chinese
5.
授课教
Instructor(s)
李展/Li,Zhan
6.
是否面向本科生开放
Open to undergraduates
or not
/Yes
7.
先修要
Pre-requisites
If the course is open to
undergraduates, please indicate the difference.)
MA202 复变函数/Complex analysis
无区别/No differences
8.
教学目
Course Objectives
If the course is open to undergraduates, please indicate the
difference.)
介绍全纯函数,拟凸域,次调和函数,L2 估计和延拓定理,Bergman 核,上同调理论,Hodge 理论,凯勒流形等
Introduce holomorphic functions, Pseudoconvexity, Plurisubharmonic functions, L^2 Estimates and
Extension problems, Bergman Kernels, Hodge theory, Kahler manifolds, etc.
无区别/No differences
9.
教学方
Teaching Methods
If the course is open to undergraduates, please indicate the
difference.)
课堂教学/Lectures
无区别/No differences
10.
教学内
Course Contents
(如面向本科生开放,请注明区分内容。 If the course is open to undergraduates, please indicate the
difference.)
Section 1
全纯函数/Holomorphic Functions
Section 2
dbar- /Rings of Holomorphic functions and dbar-
cohomology
Section 3
拟凸域与次调和函数/Pseudoconvexity and Plurisubharmonic functions
Section 4
L^2 估计/L^2 Estimates
Section 5
延拓问题/Extension problems
Section 6
Bergman /Bergman Kernels
Section 7
霍奇理论/Hodge theory
Section 8
凯勒流形/Kahler manifolds
Section 9
Section 10
………
11.
课程考
Course Assessment
1
Form of examination
2
. grading policy
3
If the course is open to undergraduates, please indicate the difference.)
考试/Exam;
作业 40% 期末考试 60%; Homework 40% Final Exam 60%.
无区别/No differences
12.
教材及其它参考资料
Textbook and Supplementary Readings
1. Analysis of Several Complex Variables, Takeo Ohsawa, American Mathematical Society;
2. Analytic Functions of Several Complex Variables, R. Cunning & H. Rossi, American Mathematical
Society.