1. General Measure Spaces: Their Properties and Construction (抽象可测空间的性质与构造)(10 credit hours)
1.1. Measures and Measurable Sets (测度与可测集合)
1.2. Signed Measures: The Hahn and Jordan Decompositions (变号测度,Hahn 分解和 Jordan 分解)
1.3. The Caratheodory Measure Induced by an Outer Measure (外测度诱导的 Caratheodory 测度)
1.4. The Construction of Outer Measures (外测度的构造)
1.5. The Caratheodory-Hahn Theorem: The Extension of a Premeasure to a Measure (Caratheodory-Hahn 定理:预测度的
扩展)
2. Integration Over General Measure Spaces (抽象测度空间上的积分) (10 credit hours)
2.1. Measurable Functions (可测函数)
2.2. Integration of Nonnegative Measurable Functions (非负可测函数的积分)
2.3. Integration of General Measurable Functions (一般可测函数的积分)
2.4. The Radon-Nikodym Theorem (Radon-Nikodym 定理)
3. The Construction of Particular Measures (特殊测度的构造) (8 credit hours)
3.1. Product Measures: The Theorems of Fubini and Tonelli (乘积测度:Fubini 定理和 Tonelli 定理)
3.2. Lebesgue Measure on Euclidean Space R" (n 维欧式空间上的 Lebesgue 测度)
3.3. Cumulative Distribution Functions on R and Lebesgue-Stieltjes integral (1 维欧式空间上的累积分布函数和 Lebesgue-
Stieltjes 积分)
4. General L
P
Spaces: Completeness, Duality, and Weak Convergence (抽象的 L
P
空间,完备性,对偶空间,弱收敛)(12
credit hours)
4.1. The Completeness of L
P
(X, μ) (L
P
(X, μ) 的完备性)
4.2. The Riesz Representation Theorem for the Dual of L
P
(X, μ), 1 ≤ p < ∞ (L
P
(X, μ), 1 ≤ p < ∞ 对偶空间的 Riesz 表示定
理)
4.3. The Kantorovitch Representation Theorem for the Dual of L
∞
(X, μ) (L
∞
(X, μ) 对偶空间的 Kantorovitch 表示定理)
4.4. Weak Sequential Compactness in L
1
(X, μ): The Dunford-Pettis Theorem (L
1
(X, μ)的弱列紧性:Dunford-Pettis 定理)
5. Some Basics in Harmonic Analysis (一些调和分析基础知识) (8 credit hours)
5.1. The Fourier transform on L
1
and L
2
(L
1
和 L
2
上的傅里叶变换)
5.2. Riesz-Thorin interpolation theorem and the Fourier transform on L
p
, 1<p<2 (Riesz-Thorin 插值定理及 L
p
, 1<p<2 上的
傅里叶变换)
5.3. The Marcinkiewicz interpolation theorem (Marcinkiewicz 插值定理)
5.4. Hardy-Littlewood maximal function and Hardy-Littlewood maximal inequality( Hardy-Littlewood 极大 函 数和 Hardy-
Littlewood 极大不等式)
5.5. Hardy-Littlewood-Sobolev inequality(Hardy-Littlewood-Sobolev 不等式)
5.6. Trigonometric Fourier Series (傅里叶三角函数级数)