1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联
系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
测度论与积分(研究生) Measure Theory and IntegrationPG
2.
授课院系
Originating Department
数学系 Department of Mathematics
3.
课程编号
Course Code
MAT7002
4.
课程学分 Credit Value
3
5.
课程类别
Course Type
专业选修课 Major Elective Courses
6.
授课学期
Semester
秋季 Fall
7.
授课语言
Teaching Language
中英双语 English & Chinese
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
数学系 王学锋 教授 wangxf@sustc.edu.cn 88018754 慧园 3 530
数学系 苏琳琳 助理教授 sull@sustc.edu.cn 88018679 慧园 3 403
Department of Mathematics; Xuefeng Wang, Professor; Room 530, Block 3, Wisdom Valley
Department of Mathematics; Linlin Su, Assistant Professor; Room 403, Block 3, Wisdom Valley
9.
/
方式
Tutor/TA(s), Contact
待公布 To be announced
10.
选课人数限额(不填)
Maximum Enrolment
Optional
授课方式
Delivery Method
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
学时数
Credit Hours
48
2
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
实变函数论(MA301)
Theory of Functions of a Real Variable (MA301)
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
研究生应用数学课程和研究生偏微分方程课程
graduate applied mathematics, graduate PDE course
14.
其它要求修读本课程的学系
Cross-listing Dept.
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
本课是大学实变函数课程的继续。在大学课程里,学生已经掌握了实轴上的 Lebesgue 测度及积分理论,故而自然地本课将
以抽象的测度论开始,再讲抽象可测空间上的积分理论,L
p
空间等。这些内容为其它研究生课程如概率论打下基础。课程
的最后部分把学生重新带回 R
n
空间中,学习调和分析的一些最基本的内容,包括傅氏变换的有界性和傅里叶级数的收敛性
等等广泛应用于应用数学和偏微分方程的内容。
This course is a continuation of the undergraduate Functions of a Real Variable (MA301), in which the students already learn
Lebesgue measure and Lebesgue integration theory. Therefore, it is natural for this course to start with abstract measure theory, then
integration theory on abstract spaces, such as L
p
spaces; these materials will prepare the students well for their further graduate
courses, such as probability theory. The last part of this course returns to R
n
space, some basic facts from harmonic analysis,
including the bounded property of the Fourier transform and the convergence of the Fourier series, etc., which are widely used in
applied mathematics and partial differential equations.
16.
预达学习成果 Learning Outcomes
通过学习掌握抽象可测空间上的积分理论,L
p
空间的性质和调和分析的一些基本内容。为后续课程的学习打下良好的分析
基础。
Through learning to grasp the integral theory on the abstract measurable space, the nature of L
p
space, and some basic contents of
harmonic analysis. To lay a good analysis foundation for the follow-up course.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
3
1. General Measure Spaces: Their Properties and Construction (抽象可测空间的性质与构造)(10 credit hours)
1.1. Measures and Measurable Sets (测度与可测集合)
1.2. Signed Measures: The Hahn and Jordan Decompositions (变号测度,Hahn 分解和 Jordan 分解)
1.3. The Caratheodory Measure Induced by an Outer Measure (外测度诱导的 Caratheodory 测度)
1.4. The Construction of Outer Measures (外测度的构造)
1.5. The Caratheodory-Hahn Theorem: The Extension of a Premeasure to a Measure Caratheodory-Hahn
扩展)
2. Integration Over General Measure Spaces (抽象测度空间上的积分) (10 credit hours)
2.1. Measurable Functions (可测函数)
2.2. Integration of Nonnegative Measurable Functions (非负可测函数的积分)
2.3. Integration of General Measurable Functions (一般可测函数的积分)
2.4. The Radon-Nikodym Theorem Radon-Nikodym 定理)
3. The Construction of Particular Measures (特殊测度的构造) (8 credit hours)
3.1. Product Measures: The Theorems of Fubini and Tonelli (乘积测度:Fubini 定理和 Tonelli 定理)
3.2. Lebesgue Measure on Euclidean Space R" n 维欧式空间上的 Lebesgue 测度)
3.3. Cumulative Distribution Functions on R and Lebesgue-Stieltjes integral 1 维欧式空间上的累积分布函数和 Lebesgue-
Stieltjes 积分)
4. General L
P
Spaces: Completeness, Duality, and Weak Convergence L
P
,弱(12
credit hours)
4.1. The Completeness of L
P
(X, μ) L
P
(X, μ) 的完备性)
4.2. The Riesz Representation Theorem for the Dual of L
P
(X, μ), 1 p < L
P
(X, μ), 1 p < 空间 Riesz 示定
理)
4.3. The Kantorovitch Representation Theorem for the Dual of L
(X, μ) L
(X, μ) 对偶空间的 Kantorovitch 表示定理)
4.4. Weak Sequential Compactness in L
1
(X, μ): The Dunford-Pettis Theorem L
1
(X, μ)的弱列紧性:Dunford-Pettis 定理)
5. Some Basics in Harmonic Analysis (一些调和分析基础知识) (8 credit hours)
5.1. The Fourier transform on L
1
and L
2
L
1
L
2
上的傅里叶变换)
5.2. Riesz-Thorin interpolation theorem and the Fourier transform on L
p
, 1<p<2 Riesz-Thorin L
p
, 1<p<2
傅里叶变换)
5.3. The Marcinkiewicz interpolation theorem Marcinkiewicz 插值定理)
5.4. Hardy-Littlewood maximal function and Hardy-Littlewood maximal inequality Hardy-Littlewood Hardy-
Littlewood 极大不等式)
5.5. Hardy-Littlewood-Sobolev inequalityHardy-Littlewood-Sobolev 不等式)
5.6. Trigonometric Fourier Series (傅里叶三角函数级数)
18.
教材及其它参考资料 Textbook and Supplementary Readings
1. Real Analysis, fourth edition, by Halsey L. Royden and Patrick M. Fitzpatrick, 2010.
2. Measure and Integral, R. Wheeden and A. Zygmund, 1997.
课程评估 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
课堂表现
Class
Performance
小测验
Quiz
课程项目 Projects
平时作业
Assignments
40%
期中考试
Mid-Term Test
20%
期末考试
Final Exam
40%
期末报告
Final
4
Presentation
其它(可根据需
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
20.
记分方式 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通/不通过) Pass/Fail Grading
课程审批 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/员会审议通过
This Course has been approved by the following person or committee of authority