2. 误差的基本概念:误差的来源,截断误差、舍入误差,绝对误差、相对误差和误差
界.
Basic concept of error: source of error, truncation error, round off error, absolute
error, relative error, error bound and so on.
2. 数值算法设计应遵循的原则:简化计算步骤以节省计算量,减少有效数字的损失,
选择数值稳定算法。
Principles for numerical algorithm: simplify the calculation process to save the
amount of computation, reduce the loss of significant digits, select the stable
numerical algorithm.
插值方法/Interpolation
1. Lagrange 插值: 线性插值与抛物插值, Lagrange 插值。
Lagrange interpolation: linear interpolation and parabolic interpolation, Lagrange
interpolation.
2. Newton 插值:Newton 插值公式,等距节点的 Newton 插值公式。
Newton interpolation: Newton interpolation formula, Newton interpolation formula with
equidistant nodes.
3. Hermite 插值:两点三次 Hermite 插值, 非标准 Hermite 插值。
Hermite interpolation: the two-point cubic Hermite interpolation, non-standard Hermite
interpolation.
4. 分段低次插值:Runge 现象,分段线性插值,样条函数。
Piecewise interpolation: Runge phenomenon, piecewise linear interpolation, Spline
functions.
数值微积分/Numerical Integration
1. 插值型求积公式:梯型公式,Newton-Cotes 公式,Simpson 公式
Interpolation quadrature: Trapezoid rule, Newton-Cotes formula, Simpson formula.
2. Gauss 求积公式, Romberg 算法
Gaussian Quadrature, Romberg Algorithm
求解线性方程组的直接方法/ Direct methods for solving System of Linear Equations
1. 矩阵代数, 向量和矩阵的范数与谱半径, 条件数和病态方程
Matrix Algebra, Norm of Vector and Matrix, Spectral radius of matrix, Condition number
and ill-conditioned equations.
2. Gauss 消去法, LU 分解和 Cholesky 分解
Gaussian elimination, LU factorization and Cholesky factorization.
3. 共轭梯度法
Conjugate Gradient Method.
求解线性方程组的迭代方法/Solving System of Linear Equations by Iterative
Methods
1. 迭代法的基本概念, Jacobi 方法和 Gauss-Seidel 方法。
Basic concepts of the iterative methods, Jacobian method and Gauss-Seidel method