1、统计学习的基本介绍(2 学时),什么是统计学习。
实验课(2 学时),介绍统计学习软件 R 及其编程语言。
2、回归模型在统计学习的应用(2 学时)。
实验课(2 学时),讲解如何使用统计学习软件 R 基于回归分析进行统计学习。
3、分类判别算法在统计学习的应用(3 学时)。
4、再抽样方法在统计学习中的应用(2 学时)。
实验课(2 学时),讲解如何使用统计学习软件 R 对数据进行分类判别, 以及如何进行在抽样方法进行推断。
5、正则方法在线性回归模型中的应用(2 学时)。
实验课(2 学时), 讲解如何使用统计学习软件 R 如何实现正则方法的应用。
6、非参数回归方法(3 学时)。
7、基于回归树的统计学习方法(2 学时)。
实验课(2 学时),讲解如何使用统计学习软件 R 如何实现非参数回归方法的应用,基本基于回归树的 R 软件包的应用。
8、支持向量机的简单介绍(2 学时)。
支持向量机在统计学习软件 R 中的实现及应用(2 学时)。
9、非监督统计学习方法的介绍(3 学时)。
1.Basic introductions to statistical learning (2 Credit Hours), and what is the statistical study.
Lab lessons (2 Credit Hours), introduction of statistical learning software R and its programming language.
2.The application of regression models in statistical learning (2 Credit Hours).
Lab lessons (2 Credit Hours), explain how to use statistical learning software R to perform statistical learning based on regression
analysis.
3.The application of classification and discriminant algorithms in statistical learning (3 Credit Hours).
4.The application of resampling methods in statistical learning (2 Credit Hours).
Lab lessons (2 Credit Hours), explain how to use the statistical learning software R to classify and discriminate data, and how to
make inferences by the resampling methods.
5.The application of the regular methods in the linear regression model (2 Credit Hours).
Lab classes (2 Credit Hours), explain how to use the statistical learning software R to achieve the application of the regular methods.
6.Nonparametric regression method (3 Credit Hours).
7.The statistical learning methods based on tree approaches (2 Credit Hours).
Lab classes (2 Credit Hours), explain how to use the statistical learning software R to achieve the application of nonparametric
regression methods, and the application of the regression tree methods by R packages.
8.A brief introduction of the support vector machine (2 Credit Hours).
Lab classes (2 Credit Hours), the implementation and application of support vector machine in statistical learning by software R.
9.Introduction the unsupervised statistical learning methods (3 Credit Hours).