Section 1: 质点系动量定理、角动量定理(3 学时)
Section 2: 动能定理、保守系统(3 学时)
Section 3: 刚体定轴转动动力学和转动惯量、刚体平面运动运动方程(3 学时)
Section 4: 刚体定点运动角动量与动能、惯量张量、惯量主轴(3 学时)
Section 5: Euler 方程、Euler 解(3 学时)
Section 6: Lagrange 解、陀螺运动(3 学时)
Section 7: 刚体一般运动(3 学时)
Section 8: Coriolis 力(3 学时)
Section 9: 广义坐标、虚位移、理想约束假设、达朗贝尔原理、哈密尔顿原理(3 学时)
Section 10: Euler-Lagrange 方程、非完整约束 Routh 方程(3 学时)
Section 11: 循环坐标与守恒律、Legendre 变换(3 学时)
Section 12: Hamilton 正则方程(3 学时)
Section 13: 多自由度质量系统运动方程、质量矩阵与刚度矩阵(3 学时)
Section 14: 主坐标、主频率、振型(3 学时)
Section 15: 受迫振动、阻尼效应(3 学时)
Section 16: 稳定性、非线性力学(3 学时)
Section 1: Momentum Theorem and Angular Momentum, Theorem of the Particle System(3 credit hours)
Section 2: Theorem of Kinetic Energy, Conservative System(3 credit hours)
Section 3: Fixed-axis Rotation of Rigid Body, Moment of Inertia, Rigid Body in Plane Motion Equations(3 credit hours)
Section 4: Fixed-point Motion of Rigid Body, Inertia Tensor, Principal Axis of Inertia(3 credit hours)
Section 5: Euler Equation and Euler Solution(3 credit hours)
Section 6: Lagrange Solution, Gyratory Motion(3 credit hours)
Section 7: General Motion of a Rigid Body(3 credit hours)
Section 8: Coriolis Force (3 credit hours)
Section 9: Generalized Coordinates, Virtual Displacement, Ideal Constraint, D'Alembert Principle, Hamilton’s Principle
(3 credit hours)
Section 10: Euler-Lagrange Equation, Routh Equation(3 credit hours)
Section 11: Cyclic Coordinates, Conservation Laws, Legendre Transformation(3 credit hours)
Section 12: Hamilton's Canonical Equations (3 credit hours)
Section 13: Equations of Motion for Multiple Degree-of-Freedom Systems, Mass Matrix, Stiffness Matrix( 3 credit
hours)
Section 14: Principal Coordinate, Principal Frequency, Mode of Vibration(3 credit hours)
Section 15: Forced Vibration, Dampening Effect(3 credit hours)
Section 16: Stability, Nonlinear mechanics(3 credit hours)