This course covers measure theory, Lebesgue’s theory of integration and differentiation, L^p spaces, and generalized
functions . It comprises 24 lectures, with each lecture lasting 100 minutes.
Topic 1: Cardinality of sets, Baire category theorem (3 lectures);
Topic 2: The Lebesgue measure on R^n, abstract measure, measurable sets and non-measurable sets (3 lectures);
Topic 3: Measurable functions, almost everywhere convergence, convergence in measure, Littlewood’s three principles
(3 lectures);
Topic 4: Lebesgue integral, monotone convergence theorem, dominated convergence theorem, premeasure, product
measure, the monotone class theorem, the Fubini-Tonelli theorem (4 lectures);
Topic 5: The Lebesgue differentiation theorem, the Hardy-Littlewood maximal function, functions of bounded variation,
absolutely continuous functions, the fundamental theorem of calculus, approximations to the identity, the formula for
integration by parts, the change-of-variable formula, the Radon-Nikodym theorem (6 lectures);
Topic 6: The theory of L^p spaces (2 lectures);
Topic 7: Distributions (2 lectures);
Review. (1 lecture)
本课程讲授测度理论,Lebesgue 积分与微分理论,L^p 空间,及广义函数,包括 24 次课,每次课 100 分钟。
主题一:集合的基数,Baire 纲定理(3 次课);
主题二:R^n 上的 Lebesgue 测度,抽象测度,可测集与不可测集(3 次课):
主题三:可测函数,几乎处处收敛,依测度收敛,Littlewood 三原则(3 次课);
主题四:Lebesgue 积分,单调收敛定理,控制收敛定理,预测度,乘积测度,单调类定理,Fubini-Tonelli 定理(4 次
课);
主题五:Lebesgue 微分定理,Hardy-Littlewood 极大函数,有界变差函数,绝对连续函数,微积分基本定理,对单位的
逼近,分部积分公式,换元公式,Radon-Nikodym 定理(6 次课);
主题六:L^p 空间(2 次课);
主题七:广义函数(2 次课)。
复习(1 次课)
教材 Textbooks:
1. Real Analysis (ISBN 9787510040535), by Elias M. Stein & Rami Shakarchi;
2. An introduction to measure theory (ISBN 9787040469059), by Terence Tao。
参考文献 References:
1. An Epsilon of Room I: Real Analysis (ISBN 9787040469004), by Terence Tao;
2. Analysis I-IV (ISBN 9783540059233, 9783540209218, 9783319160528, 9783319169064), by Roger Godement。