2
11.
授课方式
Delivery Method
讲授
Lectures
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
Other(Please specify)
总学时
Total
学时数
Credit Hours
48 0 0 0 48
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
常微分方程 A(MA201a)或者常微分方程 A(H)
Ordinary Differential Equations A (MA201a) or Ordinary Differential Equations A (H)
(MA230)
13.
后续课程、其它学习规划
Courses for which this
course is a pre-requisite
本课程为大学理工科以及金融数学专业的基础课程。
This course is for undergraduates who are science, engineering, mathematics, or
financial mathematics majors.
14.
其它要求修读本课程的学系
Cross-listing Dept.
无 None
教学大纲及教学日历 SYLLABUS
15. 教学目标 Course Objectives
偏微分方程理论研究一个方程是否有满足某些条件的解(解的存在性),有多少个解(解的惟一性),解的各种性质以及
求解方法等等,并且还要尽可能地用偏微分方程来解释和预见自然现象以及把它用之于各门科学和工程技术。偏微分方程
理论的形成和发展都与物理学和其他自然科学的发展密切相关,并彼此促进和推动。本课程介绍三种主要的偏微分方程类
型:扩散,椭圆和双曲。本课程将带领学生学习偏微分方程的基本概念,理论和方法,重点是对
PDE
模型及其在其他学
科中的应用的理解。
Partial differential equation theory studies whether an equation has a solution that satisfies certain conditions (the existence of a
solution), how many solutions (the uniqueness), the various properties of the solution, the solution method, etc. Partial differential
equations are used to explain and foresee natural phenomena and to apply them to various scientific and engineering disciplines.
The formation and development of partial differential equation theory are closely related to the development of physics and other
natural sciences. This course introduces three types of partial differential equations: diffusion (parabolic), ellipse, and hyperbolic.
This course will lead students to learn the basic concepts, theories and methods of partial differential equations, with an emphasis
on understanding the PDE model and its application in other disciplines.
16.
预达学习成果 Learning Outcomes
通过本课程,学生将掌握偏微分方程的基本概念,理论和方法,掌握输运方程,热方程,拉普拉斯方程,泊松方程和波动
方程的物理背景和数学推导。掌握特征方法,变量分离方法,能量方法,基本解方法,格林函数方法和 d'Alembert 公
式。掌握最大最小原则及其应用,并对线性方程和非线性方程的区别有所了解。
Through this course, students will master the basic concepts, theories and methods of partial differential equations,
master the physical background and mathematical derivation of transportation equation, heat equation, Laplace
equation, Poisson equation and wave equation. Master the characteristic method, variable separation method, energy
method, the method of fundamental solutions, Green's function method and d'Alembert formula. Master the principle of
maximum and minimum and its application. Understand the differences between linear and nonlinear equations.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)