1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联
系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
统计线性模型 Statistical Linear Models
2.
授课院系
Originating Department
数学系 Department of Mathematics
3.
课程编号
Course Code
MA329
4.
课程学分 Credit Value
3
5.
课程类别
Course Type
专业核心课 Major Core Courses
6.
授课学期
Semester
秋季 Fall
7.
授课语言
Teaching Language
英文 English
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
周敏 ZHOU Min
慧园 5 206
Block 5 Room.206, Wisdom Valley
Email:zhoum3@sustech.edu.cn
9.
/
方式
Tutor/TA(s), Contact
NA / To be announced / / Please list all
Tutor/TA(s)
(请保留相应选 Please only keep the relevant information
10.
选课人数限额(不填)
Maximum Enrolment
Optional
授课方式
Delivery Method
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
学时数
Credit Hours
2
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
数理统计 MA204 或者 概率论与数理统计 MA212
Mathematical Statistics MA204 or Probability and Statistics MA212
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
14.
其它要求修读本课程的学系
Cross-listing Dept.
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
本课程为有一定数理统计知识基础的本科生介绍统计线性模型。该课程涵盖了一元线性回归模型、多元线性回归模型以及
其他相关的问题,而且还介绍如何运用 R 语言进行统计计算。
This course introduces statistical linear models to undergraduate students with basic knowledge in mathematical
statistics. The course covers simple linear regression model, multiple linear regression models and other related topics,
and it involves the R language for statistical computing.
16.
预达学习成果 Learning Outcomes
学生学会如何建立线性模型,评判模型的好坏,选择适合实际问题的模型。
Students are expected to learn how to build the linear models, evaluate the proposed models, and construct the
appropriate models for the practical issues.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
1 简介 2 学时)
Chapter 1 Introduction (2 hours)
2 矩阵代数 3 学时)
Chapter 2. Matrix Algebra (3 hours)
3 一元线性回归以及二次型(6 学时
Chapter 3. Simple Linear Regression and Quadratic Forms (6 hours)
4 章多元线性回归 7 学时)
Chapter 4. Multiple Linear Regression (7 hours)
5 模型诊断 6 学时)
Chapter 5. Model Adequacy Checking: Diagnostics (6 hours)
6 杠杆点与影响点诊断 3 学时)
Chapter 6. Diagnostics for Leverage and Influence (3 hours)
7 伪变量 2 学时)
Chapter 7. Indicator Variables (2 hours)
8 纠正模型不足:变量转换以及加权回归 4 学时)
Chapter 8. Transformations and Weighting to Correct Model Inadequacies (4 hours)
9 共线性 5 学时)
3
Chapter 9. Multicollinearity (5 hours)
10 变量选择以及模型建立 5 学时)
Chapter 10. Variable Selection and Model Building (5 hours)
11 回归模型验证 1 学时)
Chapter 11. Validation of Regression Models (1 hour)
12 多项式回归 3 学时)
Chapter 12. Polynomial Regression Models (3 hours)
13 非线性模型 1 学时)
Chapter 13. Introduction to Nonlinear Regression (1 hour)
每周进度 weekly schedule:
1 周: 简单介绍线性模型(2 学时),矩阵代数(2 学时)
Week 1: Introduction to linear models (2 hours), Matrix Algebra (2 hours)
2 周:矩阵代数(1 学时),一元线性回归(1 学时)
Week 2: Matrix Algebra (1 hour)simple linear models (1 hour)
3 周:一元线性回归(2 学时),二次型(2 学时)
Week 3: Simple linear models (2 hours), Quadratic forms (2 hours)
4 周:二次型(1 学时),多元线性回归(1 学时)
Week 4: Quadratic forms (1 hour), Multiple Linear Regression (1 hour)
5 周:多元线性回归(4 学时)
Week 5: Multiple Linear Regression (4 hours)
6 周:多元线性回归(2 学时)
Week 6: Multiple Linear Regression (2 hours),
7 周:模型诊断 4 学时)
Week 7: Model Adequacy Checking: Diagnostics (4 hours)
8 周:模型诊断 2 学时)
Week 8: Model Adequacy Checking: Diagnostics (2 hours)
9 周:杠杆点与影响点诊断 3 学时), 伪变量 1 学时)
Week 9: Diagnostics for Leverage and Influence (3 hours), Indicator Variables (1 hour)
10 周:伪变量 1 学时), 纠正模型不足:变量转换(1 学时)
Week 10: Indicator Variables (1 hour), Transformations to Correct Model Inadequacies (1 hour)
11 周:纠正模型不足:加权(3 学时), 共线性 1 学时)
Week 11: Weighting to Correct Model Inadequacies (3 hours), Multicollinearity (1 hour)
12 周:共线性 2 学时)
Week 12: Multicollinearity (2 hours)
13 周:共线性 2 学时),变量选择以及模型建立 2 学时)
Week 13: Multicollinearity (2 hours), Variable Selection and Model Building (2 hours)
14 周: 变量选择以及模型建立 2 学时)
Week 14: Variable Selection and Model Building (2 hours)
4
15 周: 变量选择以及模型建立 1 学时), 回归模型验证 1 学时),多项式回归 2 学时)
Week 15: Variable Selection and Model Building (1 hour), Validation of Regression Models (1 hour), Polynomial
Regression Models (2 hours),
16 周:多项式回归 1 学时), 非线性模型 1 学时)
Week 16: Polynomial Regression Models (1 hour), Introduction to Nonlinear Regression (1 hour)
18.
教材及其它参考资料 Textbook and Supplementary Readings
(1) D.C. Montgomery, E.A. Peck and G.G. Vining. (2013). Introduction to Linear Regression Analysis, Fifth Edition.
(2) Alvin C. Rencher and G. Bruce Schaalje. (2008). Linear Models in Statistics, Second Edition.
(3) A.C. Davison. (2013). Statistical Models. Cambridge Series in Statistical and Probability Mathematic
(4) J. Shao. (1998). Mathematical Statistics. Springer-Verlag.
课程评估 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
0
课堂表现
Class
Performance
0
小测验
Quiz
5
课程项目 Projects
15
平时作业
Assignments
10
期中考试
Mid-Term Test
30
期末考试
Final Exam
40
期末报告
Final
Presentation
5
其它(可根据需
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
20.
记分方式 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通/不通过) Pass/Fail Grading
课程审批 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/员会审议通过
This Course has been approved by the following person or committee of authority