1. 有限差分逼近:截断误差,差分格式的推导,二阶差分,高阶差分,一般差分格式系数推导(6 学时)
Finite difference methods: Truncation errors, Derivation of finite difference, Second order derivatives, Higher order
derivatives, A general approach to deriving the coefficients. (6 hours)
2. 稳态和边值问题:热方程,边界条件,稳态问题,有限差分方法,局部截断误差,全局误差,稳定性和相容性,
收敛性,二范数稳定性,格林函数和无穷范数稳定性,纽曼边界条件,存在性和唯一性(10 学时)
Steady States and Boundary Value Problems: The heat equation, Boundary conditions, The steady-state problem, A simple
finite different method, Local truncation error, Global error, Stability and Consistency, Convergence, Stability in the 2-
norm, Greens functions and max-norm stability, Neumann boundary conditions, Existence and uniqueness. (10 hours)
3. 椭圆形方程:热传导问题,五点差分格式,未知数排序,精度和稳定性,九点差分格式,线性系统的求解(6 学
时)
Elliptic equations: Steady-state heat conduction, The 5-point stencil for the Laplacian, Ordering the unknowns and
equations, Accuracy and stability, The 9-point Laplacian, Solving the linear system. (6 hours)
4. 解线性方程组:快速求解算法,迭代法,收敛性分析(6 学时)
Solve the linear system: Fast solver for the linear system, Iterative methods, Convergence analysis. (6 hours)
5. 常微分方程数值解:常见常微分方程和数值解法(6 学时)
Topics on numerical solutions of ordinary differential equations: Brief review on ODE and numerical methods. (6 hours)
6. 扩散方程和抛物问题:局部截断误差和精度阶,线性离散方法,收敛性和稳定性分析,刚度矩阵,高维问题(6