1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联
系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
拓扑学 Topology
2.
授课院系
Originating Department
数学系 Department of Mathematics
3.
课程编号
Course Code
MA323
4.
课程学分 Credit Value
3
5.
课程类别
Course Type
专业选修课 Major Elective Courses
6.
授课学期
Semester
秋季 Fall
7.
授课语言
Teaching Language
中英双语 English & Chinese
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
李勤 LI Qin
数学系 Department of Mathematics
liq@sustech.edu.cn
朱一飞 ZHU Yifei
数学系 Department of Mathematics
zhuyf@sustech.edu.cn
9.
/
方式
Tutor/TA(s), Contact
待公布 To be announced
10.
选课人数限额(不填)
Maximum Enrolment
Optional
授课方式
Delivery Method
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
学时数
Credit Hours
48
2
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
抽象代数(MA214
Abstract Algebra (MA214)
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
代数曲线 Algebraic Curves (MAT7057)
高等拓扑学 Advanced Topology (MAT8004)
微分流形 Differentiable Manifolds (MAT8005)
14.
其它要求修读本课程的学系
Cross-listing Dept.
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
介绍点集拓扑和代数拓扑的一般概念和具体例子,为后续的分析、几何(代数几何与微分几何)和更高级的拓扑学课程奠
定基础。
Introduce basic notions and examples in point-set and algebraic topology, with a view towards more advanced analysis,
(algebraic and differential) geometry, and topology courses.
16.
预达学习成果 Learning Outcomes
学生能了解拓扑空间的具体范例和典型的构造,如子空间、商空间、 乘积空间;
对重要的拓扑空间的性质有清晰的理解, 如紧性、连通性;
对曲面这一简单空间的基本拓扑足够了解;
了解拓扑空间基本的代数不变量,如基本群、单纯同调群。知道一些计算方法,会计算具体的例子,并了解这些
不变量的简单应用。
Students should be familiar with concrete examples and constructions of topological spaces, e.g., subspaces,
quotient spaces, and product spaces;
Understand important properties of topological spaces, e.g., compactness and connectedness;
Be familiar with the topological properties of surfaces;
Acquire knowledge of basic algebraic invariants of a space, e.g., the fundamental group, simplicial homology;
be familiar with basic computational methods, and be able to calculate with concrete examples as well as to
apply the algebraic invariants to simple questions.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
3
Introduction (1 lecture)
Open and closed sets, continuity (3 lectures)
Compactness, connectedness, product space (4 lectures)
Quotient space (2 lectures)
The fundamental group, calculations (3 lectures)
Homotopy type, applications including the Brouwer fixed point theorem (2 lectures)
Simplicial triangulation (1 lecture)
Classification of surfaces (1 lecture)
Simplicial homology (3 lectures)
Applications of homology groups (3 lectures)
Review (1 lecture)
拓扑学简介(第 1 周)
开集,闭集,连续性(第 23 周)
紧性,连通性,乘积空间(第 45 周)
粘合空间(第 6 周)
基本群的构造和计算(第 78 周)
同伦型; 基本群的简单应用:Brouwer 不动点定理(第 9 周)
单纯剖分(第 10 周)
曲面的拓扑分类(第 11 周)
单纯同调(第 1213 周)
同调群的应用(第 1415 周)
复习(第 16 周)
18.
教材及其它参考资料 Textbook and Supplementary Readings
教材 Textbook
尤承业,基础拓扑学讲义,北京大学出版社
参考书 References
M.A. Armstrong, Basic Topology, Springer
4
James R. Munkres, Topology (Second Edition), Pearson
课程评估 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
课堂表现
Class
Performance
小测验
Quiz
课程项目 Projects
平时作业
Assignments
40
每周作业,设置助教批改
Weekly problem sets, with a grader
期中考试
Mid-Term Test
30
闭卷 Closed-book
期末考试
Final Exam
30
闭卷 Closed-book
期末报告
Final
Presentation
其它(可根据需
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
20.
记分方式 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通/不通过) Pass/Fail Grading
课程审批 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/员会审议通过
This Course has been approved by the following person or committee of authority