先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
初 等 数 论 (MA209-16)、 抽 象 代 数 (MA214)或 者 抽 象 代 数 ( H) (MA219)、 数 学 分 析
III(MA203a)或数学分析精讲(MA213-16)
Elementary Number Theory (MA209-16), Abstract Algebra(MA214), Mathematical
Analysis III (MA203a)or Real Analysis(MA213-16)
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
代数曲线 等更高等的数论或代数几何课程
More advanced courses in number theory or algebraic geometry, such as Algebraic
Curves
其它要求修读本课程的学系
Cross-listing Dept.
本课程为数学与应用数学专业学生设计,是抽象代数等课程的后续课程。课程旨在引导学生学习现代数论的重要专题知
识,为有志于在数论或代数几何方向深入学习和研究的高年级学生打下扎实的知识基础。作为专题课,本课程每次开课的
主要专题可能随授课教师而稍有变化。主要的可选主题包括:数域、代数整数、离散赋值和离散赋值环、弱逼近定理、完
备离散赋值域及其扩张、局部域、类域论简介等。
This course is a subsequent course to the Abstract Algebra course for students majored in pure and applied
mathematics. It aims at leading students into selected topics in modern number theory, and for those who are interested
in further study and research in number theory or algebraic geometry, the course will help them to lay down a solid
foundation in background knowledge. As a course in selected topics, the contents may vary slightly each year according
to the instructor. The main topics to be covered include:Number fields, algebraic integers, discrete valuations and
discrete valuation rings, weak approximation theorem, complete discrete valuation fields and their extensions, local fields,
introduction to class field theory, etc.
通过对本课程的学习,学生能够理解和掌握现代数论的若干重要理论,包括代数数域,局部域,分歧理论等。同时,学生
应当逐渐培养出较好的深入自学能力以及独立钻研科研课题的能力。
An adequate training through this course should help the students to understand some important theories in modern
number theory, such as algebraic number fields, local fields and ramification theory. Also, students are expected to
gradually foster the ability of deep self-teaching and independent, innovative study of research topics.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)