1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联
系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
数论专题 Topics in Number Theory
2.
授课院系
Originating Department
数学系 Department of Mathematics
3.
课程编号
Course Code
MA319
4.
课程学分 Credit Value
2
5.
课程类别
Course Type
专业选修课 Major Elective Courses
6.
授课学期
Semester
夏季 Summer
7.
授课语言
Teaching Language
中英双语 English & Chinese
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
吴正尧,(外聘教师)汕头大学数学系
Wu Zhengyao, Department of Mathematics, Shantou University
Email: wuzhengyao@stu.edu.cn
Webpag: http://wuzhengyao.oschina.io/homepage/
9.
/
方式
Tutor/TA(s), Contact
待公布 To be announced
10.
选课人数限额(不填)
Maximum Enrolment
Optional
授课方式
Delivery Method
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
学时数
Credit Hours
32
2
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
(MA209-16) (MA214) H (MA219)
III(MA203a)或数学分析精讲(MA213-16)
Elementary Number Theory (MA209-16), Abstract Algebra(MA214), Mathematical
Analysis III (MA203a)or Real Analysis(MA213-16)
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
代数曲线 等更高等的数论或代数几何课程
More advanced courses in number theory or algebraic geometry, such as Algebraic
Curves
14.
其它要求修读本课程的学系
Cross-listing Dept.
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
本课程为数学与应用数学专业学生设计,是抽象代数等课程的后续课程。课程旨在引导学生学习现代数论的重要专题知
识,为有志于在数论或代数几何方向深入学习和研究的高年级学生打下扎实的知识基础。作为专题课,本课程每次开课的
主要专题可能随授课教师而稍有变化。主要的可选主题包括:数域、代数整数、离散赋值和离散赋值环、弱逼近定理、完
备离散赋值域及其扩张、局部域、类域论简介等。
This course is a subsequent course to the Abstract Algebra course for students majored in pure and applied
mathematics. It aims at leading students into selected topics in modern number theory, and for those who are interested
in further study and research in number theory or algebraic geometry, the course will help them to lay down a solid
foundation in background knowledge. As a course in selected topics, the contents may vary slightly each year according
to the instructor. The main topics to be covered includeNumber fields, algebraic integers, discrete valuations and
discrete valuation rings, weak approximation theorem, complete discrete valuation fields and their extensions, local fields,
introduction to class field theory, etc.
16.
预达学习成果 Learning Outcomes
通过对本课程的学习,学生能够理解和掌握现代数论的若干重要理论,包括代数数域,局部域,分歧理论等。同时,学生
应当逐渐培养出较好的深入自学能力以及独立钻研科研课题的能力。
An adequate training through this course should help the students to understand some important theories in modern
number theory, such as algebraic number fields, local fields and ramification theory. Also, students are expected to
gradually foster the ability of deep self-teaching and independent, innovative study of research topics.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
3
第一章 环论和域论补遗 (8h)
1.1 诺特环
1.2 模论基础
1.3 局部环与局部化
1.4 域扩张及其迹与范数
1.5 Galois 理论
第二章 域的绝对值与离散赋值 (14h)
2.1 域的绝对值及其等价类
2.2 离散赋值
2.3 有理数域的绝对值
2.4 弱逼近定理
2.5 赋值域的完备化
2.6 Hensel 引理
2.7 非阿绝对值的扩张
2.8 Newton 折线
第三章 局部域及其扩张 (10h)
3.1 局部域的定义和性质
3.2 非分歧扩张
3.3 完全分歧扩张
3.4 分歧子群
3.5 Krasner 引理
3.6 局部类域论简介
Chapter 1 Complements in ring theory and field theory (8h)
1.1 Noetherian rings
1.2 Introduction to module theory
1.3 Local rings and localization
1.4 Field extensions and their traces and norms
1.5 Galois theory
Chapter 2 Absolute values and discrete valuations of fields (14h)
4
2.1 Absolute values of fields and their equivalence classes
2.2 Discrete valuations
2.3 Absolute values of the field of rational numbers
2.4 Weak approximation theorem
2.5 Completions of valued fields
2.6 Hensel’s lemma
2.7 Extensions of non-archimedean absolute values
2.8 Newton’s polygon
Chapter 3 Local fields an their extensions (10h)
3.1 Definition and properties of local fields
3.2 Unramified extensions
3.3 Totally ramified extensions
3.4 Ramification subgroups
3.5 Krasner’s lemma
3.6 Introduction to local class field theory
18.
教材及其它参考资料 Textbook and Supplementary Readings
教材 Textbook:
J. S. Milne's notes: Algebraic Number Theory, available at https://www.jmilne.org/math/CourseNotes/ant.html
推荐参考书 Supplementary Readings:
J.-P. Serre, Local Fields, Graduate Texts in Math. no.67, Springer, 1979
课程评估 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
课堂表现
Class
Performance
小测验
Quiz
课程项目 Projects
平时作业
Assignments
30
期中考试
Mid-Term Test
期末考试
70
5
Final Exam
期末报告
Final
Presentation
其它(可根据需
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
20.
记分方式 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通/不通过) Pass/Fail Grading
课程审批 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/员会审议通过
This Course has been approved by the following person or committee of authority