1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联
系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
生物数学 Mathematical Biology
2.
授课院系
Originating Department
数学系 Department of Mathematics
3.
课程编号
Course Code
MA310
4.
课程学分 Credit Value
3
5.
课程类别
Course Type
专业选修课 Major Elective Courses
6.
授课学期
Semester
春季 Spring
7.
授课语言
Teaching Language
中英双语 English & Chinese
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
数学系 苏琳琳 助理教授 sull@sustc.edu.cn 88018679 慧园 3 403
Department of Mathematics, Linlin Su, Assistant Professor; Room 403, Block 3,
Wisdom Valley
9.
/
方式
Tutor/TA(s), Contact
NA
10.
选课人数限额(不填)
Maximum Enrolment
Optional
授课方式
Delivery Method
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
学时数
Credit Hours
2
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
数学分析 III 或者 数学分析精讲
Mathematical Analysis III or Real Analysis
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
14.
其它要求修读本课程的学系
Cross-listing Dept.
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
生物数学是生物学与数学之间的边缘学科。它以数学方法研究和解决生物学问题,并对与生物学相关的数
学方法进行理论研究。本课程将向学生介绍生物数学中的几类经典模型,学生通过课程学习将深刻理解这
些模型所涉及的生物问题的基本原理,了解基于这些原理的建模方法和思路,并掌握分析这些模型所用的
数学方法。
Mathematical Biology is a frontier subject between biology and mathematics. It studies and solves biological
problems with mathematical methods, and conducts the theoretical study on the mathematical methods related
to biology. This course will introduce students some of the classic models of biology. The students will
understand the basic principles of biology involved in these models, and how to model biological problems based
on these principles. They will also master a wide range of mathematical techniques used in analysing these
models.
16.
预达学习成果 Learning Outcomes
学生过学课程了解立生模型本思法,握一的分
些模型的数学方法,特别是利用常微分方程和偏微分方程理论来分析这些模型。
Through this course, students can learn some basic ideas and principles for deriving bio-
mathematical models, and master some common mathematical methods for analyzing these models,
especially using ordinary differential equations and partial differential equation theory to analyze
these models.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
3
1. Population growth models (人口增长模型) (10 credit hours)
2. Competition of two species 两种物种的竞争)(8 credit hours
3. Predator-Prey Models 捕食者 - 猎物模型 (9 credit hours)
4. Spatially distributed Populations 空间分布的种群(12 credit hours)
5. Age-structured populations (有年龄结构的种群) (3 credit hours)
Selective topics (选讲内容): (6 credit hours)
6. Population Genetics (群体遗传学)
7. Infectious Disease Modelling (传染病模型)
8. Biochemical Reactions (生物化学反应模型)
18.
教材及其它参考资料 Textbook and Supplementary Readings
No required textbook
Main References:
1. Josef Hofbauer (U. of Vienna), Course Notes on Mathematics in Population Biology.
2. Jeffrey R. Chasnov (HKUST), Course Notes on Mathematical Biology.
Further References:
3. Reinhard Bürger, The Mathematical Theory of Selection, Recombination, and Mutation, John Wiley & Sons,
2000.
4. Josef Hofbauer and Karl Sigmund, Evolutionary Games and Population Dynamics , Cambridge University
Press , 1998.
5. Thomas Nagylaki, Introduction to Theoretical Population Genetics, Biomathematics 21, Springer-Verlag,
Berlin, 1992.
6. Robert Stephen Cantrell and Chris Cosner, Spatial ecology via reaction-diffusion equations, Wiley Series in
Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003.
课程评估 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
课堂表现
Class
Performance
4
小测验
Quiz
课程项目 Projects
平时作业
Assignments
40%
期中考试
Mid-Term Test
20%
期末考试
Final Exam
40%
期末报告
Final
Presentation
其它(可根据需
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
20.
记分方式 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通/不通过) Pass/Fail Grading
课程审批 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/员会审议通过
This Course has been approved by the following person or committee of authority