4.2. 参数矩估计的理论计算与模拟实验
4.3. 中心极限定理实验
5. 假设检验 (4 hours)
5.1. 正态总体均值和方差的假设检验
5.2. 两组独立样本 Wilcoxon 秩和检验
5.3. 分布的假设检验
6. 回归分析 (6 hours)
6.1. 简单线性回归模型和相关统计推断及 R 实现
6.2. 多元线性回归模型和相关统计推断及 R 实现
6.3. 线性回归模型诊断及 R 实现
6.4. 广义线性回归模型和相关统计推断及 R 实现
7. 非参数估计方法及 R 实现 (4 hours)
7.1. 非参数密度函数估计方法及 R 实现
7.2. 非参数回归分析及 R 实现
8. 方差分析 (4 hours)
8.1. 单因素方差分析及 R 实现
8.2. 两因素方差分析及 R 实现
9. 聚类分析 (4 hours)
9.1. 层次聚类分析及 R 实现
9.2. 快速聚类分析及 R 实现
10. 判别分析 (4 hours)
10.1. 线性判别分析及 R 实现
10.2. 二次判别分析及 R 实现
11. 主成分分析理论及 R 实现 (3 hours)
12. 因子分析理论及 R 实现 (3 hours)
1. R basics (6 hours)
1.1. Data structure and basic R functions
1.2. Data import and export
1.3. Data clean and pre-processing
1.4. Descriptive statistics and exploratory data analysis in R
2. Common distribution functions and R realization (3 hours)
2.1. Standard normal distribution function and quantile
2.2. Beta, T, F, Binomial distribution function and quantile
2.3. Chi square, Poisson distribution functions and quantile
3. Generation of common random variables with R (4 hours)
3.1. Continuous random variables and generation with R, including uniform, exponential, chi-square, t and Cauchy
distribution
3.2. Random sampling of Weibull distribution
3.3. Random sampling of lognormal distribution
3.4. Discrete random variables, distribution and sampling with R, including Binomial, Poisson, Geometry, Negative
Binomial distribution.
4. Simulation experiments in probability (3 hours)
4.1. Problems in rolling dices and simulation with R
4.2. Moment estimation and simulation with R
4.3. Central Limit Theorem and simulation with R
5. Hypothesis Testing (4 hours)
5.1. Testing mean and variance of Gaussian sample with R
5.2. Two sample Wilcoxon rank test with R