第一章 误差分析与科学计算引论(3 学时):截断误差、误差定性分析以及如何避免误差
Chapter 1. Mathematical Preliminaries and Error Analysis: Round-off Errors and Computer Arithmetic
第二章 函数零点的求解(3 学时):二分法,不动点法,牛顿迭代,迭代法的误差分析
Chapter 2. Solutions of Equations in One Variable: The Bisection Method, Fixed-Point Iteration, Newton’s Method and Its
Extensions, Error Analysis for Iterative Methods.
第三章 插值法(6 学时):拉格朗日插值,牛顿插值,Hermite 插值,三次样条插值
Chapter 3. Interpolation and Polynomial Approximation: Interpolation and the Lagrange Polynomial, Divided Differences, Hermite
Interpolation, Cubic Spline Interpolation.
第四章 数值微分与数值积分(6 学时):数值微分,数值积分,复合数值积分,高斯求积公式
Chapter 4. Numerical Differentiation and Integration: Numerical Differentiation, Elements of Numerical Integration, Composite
Numerical Integration, Gaussian Quadrature.
第五章 常微分方程数初值问题(6 学时):初值问题的基本定理,欧拉法,龙格库塔法,高阶方程,稳定性
Chapter 5 Initial-value Problems for Ordinary Differential Equations: The Elementary Theory of Initial-Value Problems, Euler’s
Method, Runge-Kutta Methods, Higher-Order Equations and Systems of Differential Equations, Stability.
第六章 解线性方程组的直接方法(6 学时):线性代数和矩阵求逆,矩阵行列式,矩阵分解,特殊矩阵
Chapter 6 Direct Methods for Solving Linear Systems: Pivoting Strategies, Linear Algebra and Matrix Inversion, The Determinant of
a Matrix, Matrix Factorization, Special Types of Matrices.
第七章 解线性方程组的迭代法(6 学时):向量和矩阵范数,特征值和特征多项式,雅可比迭代、高斯-塞德尔迭代和超松
弛迭代的算法和收敛性理论
Chapter 7 Iterative Techniques in Matrix Algebra: Norms of Vectors and Matrices, Eigenvalues and Eigenvectors, The Jacobi and
Gauss-Siedel Iterative Techniques.
第八章 逼近论(3 学时):最小二乘法,正交多项式逼近
Chapter 8 Approximation Theory: Discrete Least Squares Approximation, Orthogonal Polynomials and Least Squares
Approximation.
第九章 矩阵特征值计算(6 学时):幂法,反幂法,Householder 方法,QR 分解
Chapter 9 Approximating Eigenvalues: Orthogonal Matrices and Similarity Transformations, The Power Method, Inverse iteration
and Rayleigh Quotient Iteration, Householder’s Method, The QR Algorithm
第十章 非线性系统的求解(3 学时):不动点法,牛顿迭代
Chapter 10 Numerical Solutions of Nonlinear System of Equations: Fixed Points for Functions of Several Variable, Newton’s
Method.
教材(Textbook): Numerical Analysis, 9
th
Edition, by Richard L. Burden, J. Douglas Faires, Brooks/Cole, 2011.
推荐参考书(Supplementary Readings):
1. 数值分析,颜庆津编著,北京航空航天大学出版社,2012 年。
2. 数值分析,张平文,李铁军编著,北京大学出版社,2007。
3. 数值线性代数,徐树方,高立,张平文编著,北京大学出版社,2010。
4. 数值分析,李庆扬,王能超,易大义编著,清华大学出版社,2008。