多元统计分析课程大纲
12015 春季学期——2021 春季学期 ........................................................................P1
22022 春季学期起..............................................................................................................P7
1
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联
系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
多元统计分析
Multivariate Statistical Analysis
2.
授课院系
Originating Department
数学系
Department of Mathematics
3.
课程编号
Course Code
MA304
4.
课程学分 Credit Value
3
5.
课程类别
Course Type
专业选修课 Major Elective Courses
6.
授课学期
Semester
spring【2015 春季学期——2021 春季学期】
7.
授课语言
Teaching Language
中文 Chinese
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
蒋学军, 数学系,0755-88018687
Xuejun Jiang, Department of Mathematics
9.
/
方式
Tutor/TA(s), Contact
To be announced
10.
选课人数限额(不填)
Maximum Enrolment
Optional
60
2
讲授
Lectures
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
48
12
6
48
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
概率论(MA215),数理统计(MA204))
Probability (MA215) Mathematical Statistics(MA204))
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
统计计算,统计机器学习,高等统计学
Statistical computing, Statistical machine learning, advanced statistics
14.
其它要求修读本课程的学系
Cross-listing Dept.
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
能够让学生掌握多元统计分析的基本概念、统计思想和常见的数据处理方法,并学会使用 SAS 软件包处理数据,分析实验
结果
This course aims to enable undergraduate students to master some basic concepts and theories in
multivariate statistical analysis, to lay a solid foundation for the research in statistics and to master
basic methods of data processing. The students should learn to use SAS to process data and analyze experimental results.
16.
预达学习成果 Learning Outcomes
通过学习此课程,学生能够做到如下:
1 掌握多元统计分析的基本概念、统计思想和数据处理方法
2 具备使用 SAS 软件包处理数据,分析实验结果的能力
On successful completion of the course, students should be able to:
1. master basic concepts and theories in multivariate statistical analysis;
2. master basic methods of data processing;
3. can use SAS to process data and analyze experimental results.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
3
第一章矩阵代数 (review 2 hours)
1.1 定义
1.2 矩阵的运算
1.3 行列式
1.4 矩阵的逆
1.5 矩阵的秩
1.6 特征值、特征向量和矩阵的迹
1.7 正定矩阵和非负定矩阵
1.8 特征值的极值问题
Ch1. Matrix algebra
1.1 Definition
1.2 Matrix manipulations
1.3 Determinant
1.4 Inverse of a matrix
1.5 Rank of a matrix
1.6 Eigenvalue, eigenvector and the trace of a matrix
1.7 Positive definite matrix and nonnegative definite matrix
1.8 Extremum problem of eigenvalue
第二章 随机向量 (4 hours)
2.1 一元分布
2.2 多元分布 (2.1-2.2, 2 hours
2.3 数字特征
2.4 欧氏距离和马氏距离 (2.3-2.42 hours
Ch2. Random vector
2.1 One dimensional distribution
2.2 Multivariate distribution
2.3 Digital features
2.4 Euclidean distance and Mahalanobis distance
第三章 多元正态分布 (6 hours)
3.1 多元正态分布的定义
3.2 多元正态分布的性质 (3.1-3.2, 2 hours)
3.3 复相关系数和偏相关系数 (2 hours)
3.4 极大似然估计及估计量的性质
3.5 样本均值和(n-1S 的抽样分布 (3.4-3.5, 2 hours)
Ch3. Multivariate normal distribution
3.1 The definition of the multivariate normal distribution
3.2 The properties of the multivariate normal distribution
3.3 Multiple correlation coefficient and partial correlation coefficient
3.4 Maximum likelihood estimation and properties of estimators
3.5 Sample mean and (n-1)S sampling distribution
(第 1-4 周完成前三章教学内容)
4
第四章多元正态总体的统计推断 (6 hours)
4.1 一元情形的回顾 (skip)
4.2 单个总体均值的推断
4.3 单个总体均值分量间结构关系的检验 (4.2-4.3, 2 hours)
4.4 两个总体均值的比较推断
4.5 两个总体均值分量间结构关系的检验 (4.4-4.5, 2 hours)
4.6 多个总体均值的比较检验(多元方差分析)
4.7 总体相关系数的推断 (4.6-4.7, 2 hours)
Ch4. Statistical inference on Multivariate normal population
4.1 Review a case
4.2 A single population mean inference
4.3 Structure relationship test between single population mean component
4.4 Comparison and inference between two population mean
4.5 Structure relationship test between two population mean component
4.6 Comparative test of multiple population mean (multivariate analysis of variance)
4.7 The population correlation coefficient estimation
第五章判别分析 (6 hours)
5.1 引言
5.2 距离判别 (5.1-5.2, 2 hours)
5.3 贝叶斯判别 (2 hours)
5.4 费希尔判别 (2 hours)
Ch5. Discriminant analysis
5.1 Introduction
5.2 Distance discriminant
5.3 Bias discriminant
5.4 Fisher discriminant
( 1 8 周完成前五章教学内容)
第八周, 期中考试,
第六章 聚类分析 2 hours
6.1 引言
6.2 距离和相似系数
6.3 系统聚类法
6.4 动态聚类法
Ch6. Cluster analysis
6.1 Introduction
6.2 Distance and similarity coefficient
6.3 Hierarchical clustering method
6.4 Dynamic clustering method
第七章 主成分分析 (4 hours)
7.1 引言
5
7.2 总体的主成分 (2 hours)
7.3 样本的主成分 (2 hours)
Ch7. Principal component analysis
7.1 Introduction
7.2 Principal component of population
7.3 Principal component of sample
完成前 7 章后,第十三周布置一个 Project
第八章 因子分析 (6 hours)
8.1 引言
8.2 正交因子模型
8.3 参数估计 8.1-8.3, 2 hours
8.4 因子旋转 (2 hours)
8.5 因子得分 (2 hours)
Ch8. Factor analysis
8.1 Introduction
8.2 Orthogonal factor model
8.3 Parameter estimation
8.4 Factor rotation
8.5 Factor score
第九章 对应分析 (自我阅读)
9.1 行轮廓和列轮廓
9.2 独立性的检验和总惯性
9.3 行、列轮廓的坐标
9.4 对应分析图
Ch9. Correspondence analysis
9.1 Line profile and column profile
9.2 Independence test and Inertia
9.3 Row, column profile coordinates
9.4 Correspondence analysis graph
第十章 典型相关分析 6 hours
10.1 引言
10.2 总体典型相关 (2 hours)
10.3 样本典型相关 (2 hours)
10.4 典型相关系数的显著性检验 (2 hours)
第十六周, 期末复习小结(2 hours
18.
教材及其它参考资料 Textbook and Supplementary Readings
6
教材(Required): 应用多元分析第四版,上海财经大学出版社,王学民,2014 09
参考资料(Recommended)
Applied Multivariate Mehtods for Data Analysis, Dallase. Johnson. Higher Education Press(影印版)
课程评估 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
5%
One point penalized for absence
without leave each time
课堂表现
Class
Performance
小测验
Quiz
课程项目 Projects
20%
SAS 编程及实验结果分析
平时作业
Assignments
15%
期中考试
Mid-Term Test
30%
期末考试
Final Exam
30
期末报告
Final
Presentation
其它(可根据需
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
20.
记分方式 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通过/不通过) Pass/Fail Grading
课程审批 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/委员会审议通过
This Course has been approved by the following person or committee of authority
7
课程详述
COURSE SPECIFICATION
以下课程信息可能根据实际授课需要或在课程检讨之后产生变动。如对课程有任何疑问,请联
系授课教师。
The course information as follows may be subject to change, either during the session because of unforeseen
circumstances, or following review of the course at the end of the session. Queries about the course should be
directed to the course instructor.
1.
课程名称 Course Title
多元统计分析
Multivariate Statistical Analysis
2.
授课院系
Originating Department
统计与数据科学系
Department of Statistics and Data Science
Department of Statistics and
3.
课程编号
Course Code
MA304
4.
课程学分 Credit Value
3
5.
课程类别
Course Type
专业选修课 Major Elective Courses
6.
授课学期
Semester
spring【2022 春季学期起】
7.
授课语言
Teaching Language
中文 Chinese
8.
他授课教师)
Instructor(s), Affiliation&
Contact
For team teaching, please list
all instructors
蒋学军,
统计与数据科学系0755-88018687
Xuejun Jiang, Department of Statistics and Data Science
9.
/
方式
Tutor/TA(s), Contact
To be announced
10.
选课人数限额(不填)
Maximum Enrolment
Optional
60
8
讲授
Lectures
习题/辅导/讨论
Tutorials
实验/实习
Lab/Practical
其它(请具体注明)
OtherPlease specify
总学时
Total
11.
48
12
6
48
12.
先修课程、其它学习要求
Pre-requisites or Other
Academic Requirements
概率论与数理统计(MA212)
13.
后续课程、其它学习规划
Courses for which this course
is a pre-requisite
统计计算,统计机器学习,高等统计学
Statistical computing, Statistical machine learning, advanced statistics
14.
其它要求修读本课程的学系
Cross-listing Dept.
教学大纲及教学日历 SYLLABUS
15.
教学目标 Course Objectives
能够让学生掌握多元统计分析的基本概念、统计思想和常见的数据处理方法,并学会使用 SAS 软件包处理数据,分析实验
结果
This course aims to enable undergraduate students to master some basic concepts and theories in
multivariate statistical analysis, to lay a solid foundation for the research in statistics and to master
basic methods of data processing. The students should learn to use SAS to process data and analyze experimental results.
16.
预达学习成果 Learning Outcomes
通过学习此课程,学生能够做到如下:
1 掌握多元统计分析的基本概念、统计思想和数据处理方法
2 具备使用 SAS 软件包处理数据,分析实验结果的能力
On successful completion of the course, students should be able to:
1. master basic concepts and theories in multivariate statistical analysis;
2. master basic methods of data processing;
3. can use SAS to process data and analyze experimental results.
17.
课程内容及教学日历 (如授课语言以英文为主,则课程内容介绍可以用英文;如团队教学或模块教学,教学日历须注明
主讲人)
Course Contents (in Parts/Chapters/Sections/Weeks. Please notify name of instructor for course section(s), if
this is a team teaching or module course.)
9
第一章矩阵代数 (review 2 hours)
1.1 定义
1.2 矩阵的运算
1.3 行列式
1.4 矩阵的逆
1.5 矩阵的秩
1.6 特征值、特征向量和矩阵的迹
1.7 正定矩阵和非负定矩阵
1.8 特征值的极值问题
Ch1. Matrix algebra
1.1 Definition
1.2 Matrix manipulations
1.3 Determinant
1.4 Inverse of a matrix
1.5 Rank of a matrix
1.6 Eigenvalue, eigenvector and the trace of a matrix
1.7 Positive definite matrix and nonnegative definite matrix
1.8 Extremum problem of eigenvalue
第二章 随机向量 (4 hours)
2.1 一元分布
2.2 多元分布 (2.1-2.2, 2 hours
2.3 数字特征
2.4 欧氏距离和马氏距离 (2.3-2.42 hours
Ch2. Random vector
2.1 One dimensional distribution
2.2 Multivariate distribution
2.3 Digital features
2.4 Euclidean distance and Mahalanobis distance
第三章 多元正态分布 (6 hours)
3.1 多元正态分布的定义
3.2 多元正态分布的性质 (3.1-3.2, 2 hours)
3.3 复相关系数和偏相关系数 (2 hours)
3.4 极大似然估计及估计量的性质
3.5 样本均值和(n-1S 的抽样分布 (3.4-3.5, 2 hours)
Ch3. Multivariate normal distribution
3.1 The definition of the multivariate normal distribution
3.2 The properties of the multivariate normal distribution
3.3 Multiple correlation coefficient and partial correlation coefficient
3.4 Maximum likelihood estimation and properties of estimators
3.5 Sample mean and (n-1)S sampling distribution
(第 1-4 周完成前三章教学内容)
10
第四章多元正态总体的统计推断 (6 hours)
4.1 一元情形的回顾 (skip)
4.2 单个总体均值的推断
4.3 单个总体均值分量间结构关系的检验 (4.2-4.3, 2 hours)
4.4 两个总体均值的比较推断
4.5 两个总体均值分量间结构关系的检验 (4.4-4.5, 2 hours)
4.6 多个总体均值的比较检验(多元方差分析)
4.7 总体相关系数的推断 (4.6-4.7, 2 hours)
Ch4. Statistical inference on Multivariate normal population
4.1 Review a case
4.2 A single population mean inference
4.3 Structure relationship test between single population mean component
4.4 Comparison and inference between two population mean
4.5 Structure relationship test between two population mean component
4.6 Comparative test of multiple population mean (multivariate analysis of variance)
4.7 The population correlation coefficient estimation
第五章判别分析 (6 hours)
5.1 引言
5.2 距离判别 (5.1-5.2, 2 hours)
5.3 贝叶斯判别 (2 hours)
5.4 费希尔判别 (2 hours)
Ch5. Discriminant analysis
5.1 Introduction
5.2 Distance discriminant
5.3 Bias discriminant
5.4 Fisher discriminant
( 1 8 周完成前五章教学内容)
第八周, 期中考试,
第六章 聚类分析 2 hours
6.1 引言
6.2 距离和相似系数
6.3 系统聚类法
6.4 动态聚类法
Ch6. Cluster analysis
6.1 Introduction
6.2 Distance and similarity coefficient
6.3 Hierarchical clustering method
6.4 Dynamic clustering method
第七章 主成分分析 (4 hours)
7.1 引言
11
7.2 总体的主成分 (2 hours)
7.3 样本的主成分 (2 hours)
Ch7. Principal component analysis
7.1 Introduction
7.2 Principal component of population
7.3 Principal component of sample
完成前 7 章后,第十三周布置一个 Project
第八章 因子分析 (6 hours)
8.1 引言
8.2 正交因子模型
8.3 参数估计 8.1-8.3, 2 hours
8.4 因子旋转 (2 hours)
8.5 因子得分 (2 hours)
Ch8. Factor analysis
8.1 Introduction
8.2 Orthogonal factor model
8.3 Parameter estimation
8.4 Factor rotation
8.5 Factor score
第九章 对应分析 (自我阅读)
9.1 行轮廓和列轮廓
9.2 独立性的检验和总惯性
9.3 行、列轮廓的坐标
9.4 对应分析图
Ch9. Correspondence analysis
9.1 Line profile and column profile
9.2 Independence test and Inertia
9.3 Row, column profile coordinates
9.4 Correspondence analysis graph
第十章 典型相关分析 6 hours
10.1 引言
10.2 总体典型相关 (2 hours)
10.3 样本典型相关 (2 hours)
10.4 典型相关系数的显著性检验 (2 hours)
第十六周, 期末复习小结(2 hours
18.
教材及其它参考资料 Textbook and Supplementary Readings
12
教材(Required): 应用多元分析第四版,上海财经大学出版社,王学民,2014 09
参考资料(Recommended)
Applied Multivariate Mehtods for Data Analysis, Dallase. Johnson. Higher Education Press(影印版)
课程评估 ASSESSMENT
19.
评估形式
Type of
Assessment
评估时间
Time
占考试总成绩百分比
% of final
score
违纪处罚
Penalty
备注
Notes
出勤 Attendance
5%
One point penalized for absence
without leave each time
课堂表现
Class
Performance
小测验
Quiz
课程项目 Projects
25%
平时作业
Assignments
20%
期中考试
Mid-Term Test
期末考试
Final Exam
50%
期末报告
Final
Presentation
其它(可根据需
改写以上评估方
式)
Others (The
above may be
modified as
necessary)
20.
记分方式 GRADING SYSTEM
A. 十三级等级制 Letter Grading
B. 二级记分制(通过/不通过) Pass/Fail Grading
课程审批 REVIEW AND APPROVAL
21.
本课程设置已经过以下责任人/委员会审议通过
This Course has been approved by the following person or committee of authority