第一章矩阵代数 (review 2 hours)
1.1 定义
1.2 矩阵的运算
1.3 行列式
1.4 矩阵的逆
1.5 矩阵的秩
1.6 特征值、特征向量和矩阵的迹
1.7 正定矩阵和非负定矩阵
1.8 特征值的极值问题
Ch1. Matrix algebra
1.1 Definition
1.2 Matrix manipulations
1.3 Determinant
1.4 Inverse of a matrix
1.5 Rank of a matrix
1.6 Eigenvalue, eigenvector and the trace of a matrix
1.7 Positive definite matrix and nonnegative definite matrix
1.8 Extremum problem of eigenvalue
第二章 随机向量 (4 hours)
2.1 一元分布
2.2 多元分布 (2.1-2.2, 2 hours)
2.3 数字特征
2.4 欧氏距离和马氏距离 (2.3-2.4,2 hours)
Ch2. Random vector
2.1 One dimensional distribution
2.2 Multivariate distribution
2.3 Digital features
2.4 Euclidean distance and Mahalanobis distance
第三章 多元正态分布 (6 hours)
3.1 多元正态分布的定义
3.2 多元正态分布的性质 (3.1-3.2, 2 hours)
3.3 复相关系数和偏相关系数 (2 hours)
3.4 极大似然估计及估计量的性质
3.5 样本均值和(n-1)S 的抽样分布 (3.4-3.5, 2 hours)
Ch3. Multivariate normal distribution
3.1 The definition of the multivariate normal distribution
3.2 The properties of the multivariate normal distribution
3.3 Multiple correlation coefficient and partial correlation coefficient
3.4 Maximum likelihood estimation and properties of estimators
3.5 Sample mean and (n-1)S sampling distribution
(第 1-4 周完成前三章教学内容)