第一章 介绍 ( 1 学时)
基本概念:偏微分方程,阶,线性,齐次性,叠加原理,通解,初边值问题,二阶偏微分方程的分类,偏微分方程举
例
第二章 一阶偏微分方程(3 学时)
2.1 输运方程及其推导
2.2 一阶线性偏微分方程:特征线法,通解,爆破
第三章 抛物型方程(18 学时)
3.1 热方程和反应扩散方程及其推导
3.2 边界条件
3.3 解的唯一性(能量方法)
3.4 分离变量法
3.5 特征值问题: Sturm-Liouville 理论
3.6 非齐次问题
3.7 热方程的基本解
3.8 极值原理
第四章 椭圆型方程(16 学时)
4.1 Laplace 方程和 Poisson 方程
4.2 分离变量法
4.3 Laplace 方程的基本解
4.4 Green 公式及其应用
4.5 极值原理
4.6 Green 函数法
第五章 双曲型方程(10 学时)
5.1 波方程:弦振动
5.2 能量和唯一性
5.3 分离变量法
5.4 d'Alembert公式和波传播
Chapter 1 Introduction (1 Credit Hour)
Definition of Partial Differential Equations (PDEs); order, linearity, homogeneity, superposition principle; general solutions,
initial and boundary conditions; classifications of second order PDEs; examples of PDEs
Chapter 2 First-order Partial Differential Equations (3 Credit Hours)
2.1 Transport equation: derivation
2.2 First-order linear PDEs: method of characteristics, general solutions and break-down of smoothness
Chapter 3 Parabolic Equations (18 Credit Hours)
3.1 Heat equation and reaction-diffusion equation: derivation
3.2 Boundary conditions for heat and diffusion equations
3.3 Uniqueness of solution of heat equation via energy method
3.4 Method of separation of variables
3.5 Eigenvalue problems: Sturm-Liouville theory and eigen-expansion
3.6 Non-homogeneous problem
3.7 Fundamental solution of heat equation
3.8 The Maximum principles
Chapter 4 Elliptic Equations (16 Credit Hours)
4.1 Laplace and Poisson equations
4.2 Separation of variables
4.3 Fundamental solution of Laplace equation
4.4 Green's identities and applications
4.5 Maximum-minimum principle
4.6 Method of Green's function
Chapter 5 Hyperbolic Equations (10 Credit Hours)
5.1 Wave equation: string vibration
5.2 Energy and uniqueness
5.3 Method of separation of variables
5.4 d'Alembert formula and wave propagation